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Abstract 

This paper presents a new method for accurately measuring the vocabulary size of sec-
ond language (L2) learners. Traditional vocabulary size tests (VSTs) are limited in captur-
ing a tester’s vocabulary and are often population-specific. To overcome these issues, 
we propose an intelligent vocabulary size measurement method that utilizes massive 
robot testers. They are equipped with randomized and word-frequency-based vocabu-
laries to simulate L2 learners’ variant vocabularies. An intelligent vocabulary size test 
(IVST) is developed to precisely measure vocabulary size for any population. The robot 
testers “take” the IVST, which dynamically generates quizzes with varying levels of dif-
ficulty adapted to the estimated tester’s vocabulary size in real-time using an artificial 
neural network (ANN) through iterative learning. The effectiveness of the IVST is fac-
tually verified by their visible vocabularies. Additionally, we apply a long short-term 
memory (LSTM) model to further enhance the method’s performance. The proposed 
method has demonstrated high reliability and effectiveness, achieving accuracies 
of 98.47% for the IVST and 99.87% for the IVST with LSTM. This novel approach pro-
vides a more precise and reliable method for measuring vocabulary size in L2 learn-
ers compared to traditional VSTs, offering potential benefits to language learners 
and educators.

Keywords: Vocabulary size test, Computerized adaptive testing, Intelligent vocabulary 
size measurement, Artificial neural network, Long short-term memory, Robot testers

Introduction
Vocabulary size is essential for developing second language (L2) skills, as it accounts for 
72%, 52%, and 39% of the tester’s scores above average in reading, listening, and writ-
ing tests, respectively (Alahmadi & Foltz, 2020). Speaking proficiency is also known to 
be significantly impacted by vocabulary knowledge (Uchihara & Clenton, 2022), and 
vocabulary size is a critical predictor for L2 knowledge development (Enayat & Dera-
khshan, 2021). Vocabulary expansion affects different learning aspects, such as infor-
mal conversations, spoken proficiency, and academic comprehension (Masrai & Milton, 
2021). Making a precise L2 vocabulary size measurement for L2 learners is essential for 
individualized instruction, customized pedagogy design, and vocabulary learning tools 
development (Hsu & Ou Yang, 2013).
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In addition, vocabulary size strongly correlates with the foundation of L2 learning, 
such as phonological representations (Georgiou et al., 2020), morphosyntactic regulari-
ties (Mahr & Edwards, 2018), and even learning efficiency (Chang et al., 2018). Statisti-
cal research concluded that the most frequent 2000 words cover 79.7% of written text 
(Nurmukhamedov & Webb, 2019), and a higher result of 96% was achieved in informal 
oval texts (Honig, 2007). This finding suggests that a vocabulary of 2000 to 3000 words is 
adequate for the demands of English conversation (Adolphs & Schmitt, 2003), although 
spoken proficiency may require a more extensive vocabulary than expected for fluent 
expressions. Other research also agrees on the vocabulary size of 3000 words for fluent 
conversation (Li et al., 2023) and suggests 5000 words for academic text comprehension, 
as 5000 words produce 95% coverage (Bian et al., 2021).

Furthermore, vocabulary size expands progressively as the learner grasps new words. 
Among the possible variables that influence word learning progress, word frequency 
is often considered the most important and even equal to word difficulty by research-
ers and teachers when designing L2 learning materials (Hashimoto & Egbert, 2019). 
As widely cited in teacher guidebooks and research studies (Laubscher & Light, 2020), 
the first 2000 words in the most frequent English word list are considered the general 
core vocabulary. These words are mainly chosen from the General Service List (GSL), 
the most popular word corpus for vocabulary size test (VST). The GSL has since been 
updated as the New GSL (NGSL) (Brezina & Gablasova, 2015). The Academic Word List 
(AWL) comprises a collection of 570 words extracted fracademic texts in addition to the 
NGSL (Coxhead, 2000). There has been much research on L2 vocabulary size measure-
ment in the past few decades. These studies usually involve a vocabulary size test pre-
designed for a particular population of L2 learners (Li & Deng, 2018). The test usually 
contains fixed form-meaning quizzes or words with yes/no options indicating whether 
a tester can solve them (Zhang et al., 2020). The vocabulary size of a learner is measured 
by interpreting their testing results based on statistical models. Among these methods, 
the Rasch measurement (Holster & Lake, 2016) is part of the family of Rasch models, 
which assesses how closely the results of a measurement instrument in a VST align with 
their probabilistic expectations. Other statistical models for estimation include condi-
tional, joint, and marginal maximum likelihood estimation (Nicklin & Vitta, 2022).

However, the effectiveness of the methodology for vocabulary size measurement has 
been questioned (Hashimoto, 2021). Since conducting a comprehensive vocabulary test 
is not feasible for L2 learners, the full extent of their vocabularies remains hidden from 
researchers. In comparison to the actual vocabulary size, testing with VSTs involves 
sampling with a limited sample size. These statistical interpretations require further 
empirical validation to draw definitive conclusions from these studies. Furthermore, 
vocabulary size tests are typically designed for specific, often small populations of L2 
learners, and some tests are inflexible, making their application to larger or different 
populations challenging. Additionally, VSTs are often inefficient due to their reliance on 
paper-and-pencil (P&P) formats (Tseng, 2016).

The research question (RQ) for this study is “Given the condition that vocabulary of an 
L2 learner cannot be traversed, how to design an effective and factually verifiable vocab-
ulary size measurement method for L2 learners?” The research question is divided into 
the following sub-questions:
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RQ1: How to develop a factual verification method for vocabulary size measurement?
RQ2: How to design an intelligent vocabulary size test that can be tailored to any 
population of L2 learners and can measure vocabulary size adaptively, accurately, and 
efficiently?
RQ3: Can machine learning techniques be employed to assist the IVST to achieve 
high accuracy of assessing vocabulary size?

To address these issues, this study proposes a novel and systematic approach, namely 
an intelligent vocabulary size measurement method for L2 learners, which is adaptive, 
efficient, and factual verifiable. We first propose using massive robot testers to simulate 
variant vocabularies of L2 learners. The widely accepted notion shows that the more fre-
quently a word is used in a language, the more likely it is to be acquired by a second 
language learner (Hashimoto, 2021). Statistical evidence suggests that higher word fre-
quency indicates a higher probability of encountering, recognizing, and mastering the 
word in various contexts and daily speech (Hadley & Mendez, 2021). Low-frequency 
words are quickly forgotten, even if remembered at one time, due to their absence in 
written texts and everyday language. Consequently, word frequency is often assumed 
to be the natural order of word learning (Teng, 2019; González-Fernández & Schmitt, 
2020). The robot testers are created to have the same word-frequency-based vocabular-
ies with L2 learners. They can form a solid foundation for convincing verification with 
their visible vocabularies. Additionally, to address the issue that VSTs are often designed 
for and tested among specific population groups, an intelligent vocabulary size test 
(IVST) is put forward to estimate any tester’s vocabulary size in real-time by an artificial 
neural network (ANN) through iterative learning. The IVST adaptively generates quiz-
zes with appropriate difficulties according to the estimation and converges the estimated 
size to one’s true vocabulary size efficiently within 60 quizzes. Furthermore, a long 
short-term memory (LSTM) model is applied to further improve measurement accu-
racy. Suppose that L2 learners with a specific vocabulary size will likely produce similar 
testing data in a VST. The robot testers are first grouped by different vocabulary sizes 
and “take” the IVST. The IVST produces testing data for testers of different groups. The 
LSTM model extracts group-related latent features from the testing data and measures 
any tester’s vocabulary size by classifying one’s testing data into a correct group.

The contributions of this study are as follows: 

1. This study is the first one to propose and implement robot testers to simulate L2 
learners with word-frequency-based and randomized vocabularies. The robot testers 
with their visible vocabularies form a factual verification foundation for the proposed 
vocabulary size measurement.

2. This study proposes the intelligent vocabulary size test. It generates quizzes dynami-
cally and adaptively based on the tester’s vocabulary size estimated in real-time by 
an artificial neural network model. It includes an efficient measurement strategy to 
complete the measurement within 60 quizzes. The IVST is designed for any popula-
tion.

3. A LSTM model is applied to vocabulary size measurement to further improve the 
accuracy. Trained by the extensive testing data of grouped robot testers collected in 
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the IVST, the LSTM model measures the vocabulary size of any newcomer precisely 
by classifying one’s testing data into a correct group.

The paper is organized as follows. In the “Introduction” section, the background, moti-
vation, research questions, and contribution of this study are presented. The related 
work is provided in the “Literature review” section. In the “Methodology” section, the 
proposed methodology is introduced in detail, including robot testers, the intelligent 
vocabulary size test, and the LSTM model. In the “The experiments and results” sec-
tion, the extensive experiments are conducted to testify the effectiveness of the proposed 
method. The “Conclusion and future work” section is attained in the end.

Literature review
The research of vocabulary testing traces to the time before 1970s (Nizonkiza & Van den 
Berg, 2014). Although the vocabulary lists were commonly provided for learners for writ-
ing and translation, vocabulary tests remained absence. In 1970s, standard synthesized 
tests emerged mainly for lexical and language proficiency purpose instead of vocabulary 
(Spolsky, 1995). Vocabulary was peripheral because grammar attracts L2 learners and 
instructors the most. People at that time believed that grammar strengthened L2 learn-
ers to generate infinite L2 sentences and obtain language proficiency (Nizonkiza, 2011).

The 1980s are widely considered a turning point in the measurement of L2 vocabu-
lary size (Read & Dang, 2022) because vocabulary became an integral and predominant 
component of L2 language acquisition and proficiency (Pawley & Syder, 1983). Lewis 
(1993) announced the famous principle that “language consists of grammaticalised lexis, 
not lexicalised grammar.” Several vocabulary studies emerged at this time, including the 
first widely used conventional vocabulary size measurement test, the vocabulary levels 
test (VLT) (Nation & Chung, 2009). The VLT is a pedagogical diagnostic tool and used 
to measure vocabulary by levels. The lower-level vocabulary contains words with high 
frequency (Coxhead, 2010). The VLT was soon superseded by the VST (Beglar, 2010), 
which was free and available online for various purposes and populations. For example, 
Coxhead et  al. (2015) designed tests for native English speakers in New Zealand sec-
ondary schools, while Karami et al. (2020) created tests for Iranian English learners, and 
Zhao and Ji (2018) developed a Mandarin version. However, the validity of these tests 
was based on the modern theory of interpreting scores into vocabulary sizes (Read & 
Dang, 2022). The validation could have been more convincing due to the tests’ lack of 
robustness in accounting for differences in learners’ vocabularies. Such tests were fixed 
and designed for specific populations who cannot represent the diversity of global L2 
learners, such as age, native language, educational background, and even L2 learning 
materials. The limitations were also acknowledged in these papers (Stoeckel et al., 2019). 
To address this issue, Tseng (2016) highlighted the flaws of conventional paper-and-pen-
cil tests for vocabulary size measurement, which are fixed, uniform, and contain many 
test items. They proposed computerized adaptive testing (CAT) as an alternative. They 
divided 1536 participants into five groups to take the CAT of 240 vocabulary test items. 
The results were validated through Rasch analysis to suggest its potential efficiency and 
precision in measuring English vocabulary size. However, the validation for the specific 
test does not guarantee validity in other examinees. A test showing high validity through 
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Rasch analysis for a specific population may have low validity for other examinees (Gök-
can & Aktan, 2022).

In addition, the notion of frequency-based acquisition was first derived from psycho-
logical research which recognized frequency as one of the three major experiential factors 
(Ellis, 2013). High frequency of a word indicates more experience conjunctions, including 
perception, context association, learning, practice and memory. The power law of learning 
(Anderson, 1982) also supports the relationships between practice and performance in the 
language acquisition. Therefore, frequency-based vocabulary size tests have been put for-
ward to measure the vocabulary sizes of any L2 learners. Milton and Treffers-Daller (2013) 
utilized the frequency-based vocabulary size test to investigate the relationship between 
vocabulary size and the academic achievement of undergraduates in three British universi-
ties. Schmitt (2014) analyzed the pedagogical challenge raised by high, medium, and low-
frequency vocabulary corpora and pointed out the importance of the most frequent words in 
vocabulary expansion. These two studies demonstrated the well-accepted notion that word 
frequency is crucial in vocabulary expansion. Conversely, Hashimoto (2021) argued that fre-
quency-based vocabulary size tests might not reflect the variance of words that learners actu-
ally know. This statement was asserted based on the small Pearson correlation value between 
Rasch item difficulty and word frequency. The value was calculated based on the result of an 
experiment on a specific population of 403 English learners who took a pre-designed yes/
no VST containing 10% random sample of the first 5000 most frequent words in the cor-
pus of contemporary American English and sampled pseudowords. de Groot (2006) suggests 
the factors that may also be considered, including necessity, coverage, semantic neutrality, 
length, part of speech, polysemy, morphological regularity, cognateness, and orthographic 
transparency. Therefore, a VST should be flexible to accept additional factors.

Furthermore, Segbers and Schroeder (2017) created frequency-based virtual vocabu-
laries to represent the L2 learners. These established virtual lexicons were collected from 
specific corpora and varied in size. The virtual lexicons were repeatedly sampled and 
“took” a VST to find the probability that a quiz could be solved. Vocabulary sizes were 
estimated by interpreting their testing scores with the probabilities of quizzes. However, 
the VST is fixed and pre-designed for specific examinees.

In summary, the abovementioned research is lack of solid validation or is not flexible 
enough. The words grasped by L2 learners may not exist in the VST quizzes, from which 
vocabulary size can be interpreted (Stoeckel et al., 2021). Specifically, although the CAT 
contained adaptive test items, the vocabularies of the 1536 human test-takers remained 
invisible and may not be qualified to represent any L2 learner, which weakened the vali-
dation of its effectiveness. On the other hand, frequency-based vocabulary size tests 
were not flexible enough to accept other factors. Thirdly, the virtual lexicons were not 
adaptive as they only took a VST with fixed test items. Finally, the mentioned VSTs are 
inefficient because they usually contain hundreds of vocabulary test items.

This research initiates artificial intelligence (AI) technologies in vocabulary measure-
ment. To the best of our knowledge, the proposed intelligent vocabulary size measure-
ment method is the first one designed for any population group learning any second 
language The method introduces robot testers to take the adaptive IVST. The quizzes 
are adaptively and dynamically generated with appropriate difficulties. Its effectiveness is 
also factually verified by the robot testers which accurately simulate L2 learners. Verified 
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by the substantial experiments, 60 quizzes are robust enough for the IVST to estimate 
vocabulary size accurately. More importantly, a long short-term memory model is applied 
to accompany the IVST to further improve its accuracy. And furthermore, the method is 
flexible to accept any merit factor without modification when applied in the real world.

Methodology
The overview of proposed methodology is shown in Fig.  1. To simulate L2 learners, 
the robot testers have randomized and word-frequency-based vocabularies of different 
sizes. The IVST consists of an initialization process for rough vocabulary size estimation, 
an ANN for real-time estimation, and an efficient testing strategy and generates appro-
priate quizzes adaptively. The robot testers “take” the IVST. Their sequential testing data 
are collected and used to train a LSTM model, which improves the performance further.

The robot testers: modeling the L2 learners

This section presents the method for creating robot testers to accurately model L2 learn-
ers from the vocabulary standpoint.

The creation of robot testers

A robot tester is a piece of running code combined with its data. Each robot tester has 
its own vocabulary which has various words but specific size. According to the well-
accepted notion that frequent words are more likely to be grasped, we deduce the asser-
tion that a robot tester’s vocabulary should meet the following constraints: 

1. The vocabulary size restriction: a robot tester has a known word list, e.g., its vocabu-
lary. A specific group of robots has a matching number of known words, e.g., equal-
sized vocabulary;

2. The commonly known words restriction: particular words are known by all robots of 
a specific group;

3. The vocabulary differentiation restriction: particular words are known only to some 
robots of a specific group; and

4. The variants restriction: the known words of the robots obey the variants that merit 
consideration, such as word frequency, part of speech, and syntactic complexity.

In this study, the vocabulary of a robot tester satisfies the constraints simultaneously. Any 
robot testers have a specific vocabulary size. Those having the same size are categorized 

Fig. 1 The overview of the methodology
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in a group, denoted as Gsize . For example, a robot tester who has an 800-sized vocabu-
lary, denoted as V800 , should belong to G800 . To simulate the gradual expansion of vocab-
ulary by L2 learners, an interval of 200 words is specified between the adjacent sizes of 
groups. The minimum vocabulary size is 200 words, and the maximum vocabulary size 
is 3000 words, resulting in 15 robot tester groups. Their vocabulary words are randomly 
selected from the NGSL (2801 words) and AWL (570 words) with probabilities dynami-
cally calculated based on word frequency.

In addition, the most frequently used words are usually retained by L2 learners in a 
group and are thus collected as the commonly known words, denoted as V common

size  . 
We suggest that the robot testers in a group of larger sizes, namely, the upper group, 
always include the commonly known words of those in groups of smaller sizes, namely, 
the lower group, into their vocabulary in advance to randomly select new words dur-
ing creation. For instance, the commonly known words of robot testers in the smallest 
group, G200 , are collected and denoted as V common

200
 . Then, when creating the robot testers 

in the next upper group, G400 , the commonly known words of the lower group are first 
included, denoted as V400 ⊃ V common

200
 . Then, other words are randomly selected for any 

robot testers in G400 to fill their 400-sized vocabulary. This process repeats iteratively for 
any robot testers in subsequent upper groups until all robot testers are created.

Therefore, the vocabulary Vsize of a robot tester in a group Gsize can be represented as a 
union of two subsets, the set of commonly known words and the set of random selected 
words, as shown in Eq. (1).

where V freq
size  is the word-frequency-based subset of the vocabulary which has n vacan-

cies other than the common words. It selects new words randomly based on the set P, 
the probability coefficients of the random function. P consists of the probabilities of the 
remaining words calculated by the words’ frequencies labeled in NGSL and AWL. A 
more frequent word has a higher probability. In addition, the labeled frequencies do not 
decline gradually. The words at the top have large frequency values, whereas the words 
at the bottom have a relatively low frequency (Vongpumivitch et al., 2009). Therefore, 
the probability for one of the remaining words, denoted as wordj , is calculated by

where Frequency denotes the total frequency of the remaining words that have yet to 
be chosen.

To conclude, the created robot testers meet the aforementioned constraints. The vocabu-
lary size constraint is assured by the word selection process. In addition, guaranteed by the 
probability coefficient, the robot testers in a group are likely to be familiar with the most 
frequent words and share a collection of known words. Therefore, the commonly known 
words and variants restrictions are satisfied. Meanwhile, the random process generates dif-
ferent words for each robot tester to guarantee the vocabulary differentiation constraint.

(1)
Vsize = V common

size ∪ V
freq
size

V
freq
size = {wordi}, 1 ≤ i ≤ n

wordi = random(P),

(2)Pj =
Frequencyj
∑

Frequency
,
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The creation of a robot follows Algorithm 1.

Algorithm 1 The Algorithm for Creation of a Robot Tester

The intelligent vocabulary size test

The intelligent vocabulary size test consists of an initialization process, real-time vocab-
ulary size estimation, dynamic quiz generation, and efficient testing strategy, as shown in 
Fig. 1. The IVST: 

1. Estimates the vocabulary size of a tester in real-time based on the ANN model which 
is trained iteratively by one’s latest six testing data;

2. Dynamically and adaptively generates quizzes of appropriate difficulties based on the 
estimation;

3. Efficiently and precisely converges the estimation to a tester’s vocabulary size within 
60 quizzes.

The initialization process

The initialization process roughly estimates a tester’s vocabulary size and prepares the 
first testing data batch of six quizzes for the ANN model training.

The words in corpus are first sorted based on word frequency and then separated into col-
lections without intersection. Each collection contains a specific number of words, i.e., 200, 
with different frequencies representing varying difficulty levels. Then, the initialization pro-
cess randomly generates quizzes from these collections. The score of the previous quiz deter-
mines the difficulty of the next quiz. The steps of the initialization process are as follows: 

1. For efficiency, any tester is supposed to have a middle-sized vocabulary of 1400. 
Thus, the IVST generates the first quiz from a 1400-sized word collection represent-
ing medium difficulty.

2. If the answer to the quiz is correct, the estimated vocabulary size increases by a cer-
tain amount, known as the stride. Since the tester’s vocabulary size is unknown, a 
larger stride value of 400 words is chosen to speed up the rough estimation process.
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3. If the answer is incorrect, the estimated vocabulary size decreases by the stride.
4. Subsequent quizzes are generated from the collection corresponding to the esti-

mated size.
5. Ten quizzes are generated in the initialization process.

The ten quizzes’ estimated vocabulary sizes are the initialization process’s testing data, 
denoted as li and 1 ≤ i ≤ 10 . l5, l6, . . . , l10 are the first batch of testing data used to train 
the ANN model.

The real‑time vocabulary size estimation

ANNs are designed to simulate the human brain’s biological information processing. 
They learn knowledge, such as patterns, from input data during the training process. An 
ANN consists of several layers of artificial neurons. Each neuron has inputs, a transfer 
function, and an output. The neurons between layers are connected by coefficients, also 
known as weights. The outputs of neurons in the previous layer typically serve as inputs 
for neurons in the next layer. The weighted sum of these inputs forms the activation sig-
nal for the neuron, which then undergoes the transfer function to produce an output. 
Knowledge is acquired by updating the weights, guided by a loss function during the 
training process.

The architecture of the proposed ANN is shown in Fig. 2. It contains three hidden lay-
ers with ten neurons in each and is finally connected to a Sigmoid function. The loss is 
calculated by the mean squared error (MSE) loss function and is propagated backwards 
to update the parameters of the ANN model. All testing data are not used to train the 
ANN together because the data at the beginning is usually noisy, abundant, and inac-
curate. A batch of the latest six data is suitable for driving the real-time estimation to 
the tester’s true vocabulary size and guiding the IVST to generate quizzes with appropri-
ate difficulty. The ANN is first trained by the testing data collected in the initialization 
process. Then, when the tester answers a quiz and a new piece of data lm is marked, the 
latest six data, denoted as li and m− 5 ≤ i ≤ m , are used to train the ANN model. It 
estimates the tester’s vocabulary size in real-time, denoted as Vestimated . Its value indi-
cates the division point between the sizes of adjacent groups where the tester’s actual 
vocabulary size may lie.

Fig. 2 The architecture of the ANN model
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Dynamic quiz generation

After the initialization process, every quiz is generated based on the ANN model’s 
real-time estimation of the tester’s vocabulary size. As the estimated size value usu-
ally lies between the sizes of adjacent groups, the lower and upper group sizes, rep-
resented as ⌊Vestimated⌋ and ⌈Vestimated⌉ , respectively, are used as the difficulties to 
generate the quizzes. For instance, if the estimated vocabulary size is 578, the lower 
and upper adjacent sizes would be V400 and V600 , respectively.

Quiz generation on adjacent sizes A subsequent quiz is generated according to the esti-
mated vocabulary size.

When the estimated size Vestimated is greater than the average of two adjacent vocabu-
lary sizes, denoted as µ , the next quiz is generated with the difficulty of the upper size 
⌈Vestimated⌉ . If the estimated size is lower than µ , the next quiz is generated according to 
the lower size ⌊Vestimated⌋ . When a tester answers a quiz, a new piece of testing data is 
generated by marking data of vocabulary sizes. If the answer is correct, the upper vocab-
ulary size above the estimated vocabulary size is marked as the new piece of testing data, 
denoted as lm = ⌈Vestimated⌉ . If the answer is incorrect, lm = ⌊Vestimated⌋ is marked. For 
example, suppose a tester usually answers quizzes generated with the difficulty of the 
lower size correctly but incorrectly for the ones according to the upper size. In that case, 
the new data are marked on either upper or lower sizes. In this condition, the ANN esti-
mated real-time vocabulary size is always between the two adjacent sizes. Thus, a hori-
zontal trend appears as the ANN perceives that the estimated vocabulary size is correct.

Leapfrog quiz generation A leapfrog quiz allows a tester’s real-time estimated vocabu-
lary size upgrading or downgrading across adjacent groups.

The ANN estimated vocabulary size most likely increases when the tester answers 
a quiz correctly. If the tester usually answers quizzes correctly, an increasing trend 
accumulates. When the estimated vocabulary size inclines and surpasses the preset 
upgrading threshold, denoted as θ̂↑ , an upgrading leapfrog quiz is generated with the 
difficulty of the second upper vocabulary size. If the answer is still correct, the vocab-
ulary size data is marked at the second upper size, lm = ⌈Vestimated⌉ + 1 . If the answer 
to the leapfrog quiz is incorrect, the data is marked as before, lm = ⌊Vestimated⌋ . 
Alternately, if the incorrect answers accumulate enough and the estimated vocabu-
lary size level is below the preset downgrading threshold θ̂↓ , a downgrading leap-
frog quiz from the collection of the second lower size is presented. If the answer is 
still incorrect, the new data is marked at the second lower size, lm = ⌊Vestimated⌋ − 1 . 
Otherwise, lm = ⌈Vestimated⌉ is marked as before.

Efficient testing strategy

An increase in the number of commonly known words often correlates with expand-
ing vocabulary. Groups of L2 learners with larger vocabularies tend to know more 
commonly known words. To reduce the time needed for estimation, we suggest col-
lecting the commonly known words of robot testers from each group and using their 
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differences as a key of efficiency. An efficient testing strategy can take advantage of this 
to speed up the adaptive testing process and the convergence of estimation by generat-
ing quizzes from adjacent groups’ different commonly known words. Specifically, when 
a quiz is generated with the difficulty of a specific vocabulary size, the testing word is 
randomly selected from the commonly known words of the group of that size but not 
from the adjacent smaller one. For example, suppose a tester’s estimated vocabulary size, 
Vestimated , is greater than the average size µ of the adjacent groups. In that case, the fol-
lowing quiz is generated from the commonly known words in the upper group but not in 
the lower group, denoted as ⌈Vestimated⌉

common − ⌊Vestimated⌋
common.

The algorithm of the intelligent vocabulary size test

The intelligent vocabulary size test runs according to Algorithm 2.

Algorithm 2 The Algorithm of the Intelligent Vocabulary Size Test
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The LSTM model for vocabulary size measurement

The intelligent vocabulary size test relies on an ANN to build a convergent path of 
the estimated vocabulary size through iterative learning. However, this method may 
be vulnerable when handling some exceptional cases containing coincidental outli-
ers. For example, a second language learner may know a few hard words, which may 
also happen to be used as the IVST quizzes by chance. Furthermore, if these quiz-
zes appear in concentration, the marked data responding to the correct answers may 
form an inclining trend. Given enough subsequent quizzes, the IVST still stands a 
chance of driving the trend back, but, if these quizzes happen to appear near the end, 
an incorrect measurement may appear.

The long short-term memory model is applied to address this issue because robot 
testers who have the same vocabulary size are likely to respond similarly to the IVST 
quizzes. Therefore, their testing data should contain group-related features which can 
be extracted and analyzed by deep learning models. The LSTM model extracts such 
latent features from the testing data of robot testers grouped by specific vocabulary 
sizes. Then, the LSTM model can precisely predict the vocabulary size for any new 
testers, including any second language learners, by classifying their testing data into 
the correct groups. In its entirety, the LSTM model makes the IVST more robust and 
insensitive to a few outliers.

The testing data for training

In this study, massive robot testers with a specific vocabulary size are created for each 
group so that the LSTM has enough knowledge to handle exceptional randomization. 
Their testing data of the last 50 IVST quizzes are marked as a sequence for each robot 
tester, denoted as (lr

11
, lr
12
, . . . , lrt , . . . , l

r
60
) for the rth robot tester. The sequential testing 

data of the grouped robot tests are then used to train the LSTM model. The group-
related latent features are extracted from the massive testing data and represents human 
testers with a specific vocabulary size accurately.

The LSTM model for vocabulary size measurement

LSTM is put forward to replace the recurrent neural network (RNN) to address the 
known vanishing gradient problem. The LSTM is relatively insensitive to gap length 
which constitutes its advantage to extract long dependencies and make predictions 
based on sequential data. Therefore, it is an ideal choice for learning from sequen-
tial testing data of 50 items and making precise predictions. In detail, LSTM is a gat-
ing mechanism that controls memory by storing, reading, and forgetting information 
through gates. An LSTM cell is composed of an input gate, a forget gate, and an output 
gate, as shown in Fig. 3. The input gate controls the information that can be sent into 
the LSTM cell; the forget gate determines how much information should be removed. 
The output gate is responsible for outputting the proper information. Each gate contains 
parameter matrices that are updated through the training process and extract the long-
term dependencies of any 50-item sequence of the testing data. Generally, given a pair 
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of an input sequence x = (x1, x2, . . . , xt , . . . xk) , the calculations in an LSTM cell are as 
follows:

where σ and φ represent the sigmoid and tanh functions, respectively. The operators ⊙ 
and + are the element-wise multiplication and element-wise addition, respectively. As 
shown in Eq. (3), the input gate of the LSTM model reads the current input xt , the previ-
ous hidden state ht−1 and the previous cell state ct−1 , and uses a sigmoid function ( σ ) to 
determine the importance of the input at time t. Similarly, the forget gate ft determines 
which information needs to be attended to or ignored. The cell state ct is calculated 
based on the input and forget gate information by the tanh function ( φ ) and element-
wise multiplication ( ⊙ ) with Eq. (5). Consequently, the output gate calculates the hidden 
state ht carried over to the next time step along with the cell states.

As illustrated in Fig. 4, the LSTM model has two layers, each consisting of 50 LSTM 
cells. The testing data from quizzes 11 to 60 are used as the input sequence to feed the 
LSTM cells, respectively, allowing the model to learn the whole convergent trend of each 
robot tester from their testing data. The gating mechanism of the LSTM can extract and 
memorize the long-term dependencies inside the testing data sequence. Finally, a linear 
classifier is connected to the LSTM to make predictions. In comparison, the artificial 
neural network only focuses on real-time vocabulary size estimation by extracting local 
short-term dependencies of the latest six testing data. The LSTM, however, can learn 
the whole sequences of each group thoroughly and comprehensively, extracting group-
related latent features of the massive grouped testing data. Thus, when a new tester takes 
the IVST and produces new testing data, the LSTM can accurately predict one’s vocabu-
lary size by classifying the testing data into the correct group.

(3)it = σ(Wixxt +Wihht−1 +Wicct−1),

(4)ft = σ(Wfxxt +Wfhht−1 +Wfcct−1),

(5)ct = ft ⊙ ct−1 + it ⊙ φ(Wcxxt +Wchht−1),

(6)ot = σ(Woxxt +Wohht−1 +Wocct),

(7)ht = ot ⊙ φ(ct),

Fig. 3 An LSTM cell
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The experiments and results
This section presents the experiments and results which demonstrate high reliabil-
ity and effectiveness, achieving accuracies of 98.47% for the IVST and 99.87% for the 
IVST with LSTM.

The experiments settings

The code of the experiments are developed in Python 3.7. The mainly used packages 
include pytorch and pyplot, responsible for ANN, LSTM and plots. The code runs on a 
computer with Intel Core i7-7820 CPU and 16 GB memory.

The corpus for the vocabulary size measurement experiments consists of the NGSL 
(2801 words) and AWL (570 words), for a total of 3371 words. Assuming that no one can 
grasp all these words, the maximum vocabulary size is set at 3000, with 200 words as the 
interval between adjacent groups, resulting in 15 groups from G200 to G3000 . One hun-
dred robot testers are created for each group.

The effectiveness of the method is validated by accuracy metrics. The accuracy for 
group Gi , denoted by Accuracyi , is defined by Accuracyi =

Ncorrect
i
Ni

 , where Ncorrect
i  denotes 

the number of correctly estimated cases, and Ni denotes the number of cases in group 
Gi . The overall accuracy is the fraction of all correct cases among all cases in the 15 

groups, which is calculated Overall Accuracy =

15∑

1

Ncorrect
i

15∑

1

Ni

.

The accuracy values are calculated based on the robot testers’ visible vocabularies. 
For the IVST, its estimation test is deemed accurate only if the estimated vocabulary 
size is within a range of plus or minus 100 of the true vocabulary size. For example, a 
prediction for a robot tester in group G400 is considered accurate only if the predicted 
vocabulary size fell within the range of (300, 500). For the LSTM model, a estimation is 
considered correct only when the model successfully classified a new robot tester into 
the correct group.

Fig. 4 The LSTM classifier
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Experiment 1: Evaluation on sufficient quantity of robot testers

Experiment 1 evaluated how many robot testers are guaranteed for the LSTM to elimi-
nate the influence caused by outliers. Human testers may know a few difficult words, 
which is simulated by outliers of randomization during robot tester creation. We test 
different quantities of robot testers in each group, i.e., 10, 30, 50, 70, 90, and 110. The 
results of the IVST alone and with the LSTM model are collected.

Experiment 2: Validation of the intelligent vocabulary size test

Experiment 2 verifies the effectiveness of the IVST. One thousand five hundred robot 
testers grouped by specific vocabulary sizes undergo the IVST individually. The accuracy 
is calculated based on the results of the 1500 robot testers.

Experiment 3: Validation of the LSTM model for vocabulary size estimation

One thousand five hundred sequences of testing data are collected in experiment 2. 
They are then used to train the LSTM model in experiment 3. Additionally, 1500 new 
robot testers (100 for each group) are created and used to simulate other human testers 
and validate the LSTM model. These new robot testers also take the IVST which gener-
ates the new testing data. The vocabulary size of a new robot tester is determined by the 
group in which one’s testing data are classified.

Results

The creation mechanism of robot testers enabled the collection of commonly known 
words for each group. Table 1 shows the percentage of commonly known words in the 
robot tester vocabulary sizes of each group, confirming that the efficient testing strategy 
is statistically sound.

Results of experiment 1

The code ran several times to calculate the average value of the accuracy which is some-
times unstable for small quantities. The accuracy calculated from quantities more than 
90 only change very slightly during the experiment. The results are shown in Table 2.

Results of experiment 2

Figures  5, 6, and 7 illustrate the testing data of three robot testers collected in the 
IVST. The blue round markers represent the real-time estimated vocabulary size based 
on the latest six testing data, beginning with the first one on the 11th quiz. The green 
square markers indicate the difficulty of the vocabulary size from which the quizzes are 

Table 1 The percentage of the commonly known words of the robot testers in each group

Group 200 400 600 800 1000

Percentage 76% 73% 74% 68% 71%

Group 1200 1400 1600 1800 2000

Percentage 66% 61% 66% 65% 64%

Group 2200 2400 2600 2800 3000

Percentage 69% 61% 65% 63% 64%
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generated, referred to the real-time question level in the figure. The markers outside the 
adjacent sizes around the blue round markers are the difficulty of leap frog quizzes. The 
red triangle markers represent the marked testing data obtained from a robot tester in 

Table 2 The results of the IVST alone and with the LSTM model for different quantities of robot 
testers in a group

Robot tester quantities 10 30 50 70 90 110

The IVST 67.36% 73.38% 81.74% 93.35% 97.94% 98.49%

The IVST with LSTM 66.93% 75.64% 89.38% 96.45% 99.83% 99.87%

Fig. 5 Results of a robot tester in group: 800

Fig. 6 Results of a robot tester in group: 1400
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response to a quiz. The estimated vocabulary size finally produced at the 60th quiz is the 
result of a tester in the IVST.

Figure 5 shows one of the vast majority of cases. The robot tester has a frequency-
based, randomized 800-sized vocabulary. The initialization process provides a rough 
estimation, and the IVST then real-timely estimates the tester’s vocabulary size based 
on the last six testing data. Quizzes are appropriately provided from quizzes 11 to 14, 
leading the estimation to converge to the tester’s actual vocabulary size quickly. The 
trend continues variably, with leapfrog quizzes offered many times, such as quizzes 
No. 14, 18, 23, and 25–31. As the robot tester usually answers correctly for down-
grading quizzes and incorrectly for upgrading quizzes, the convergent trend becomes 
stable after quiz No. 40 until the end. This typical case illustrates the stability of the 
intelligent vocabulary size test, as the whole trend is controlled quickly within the two 
adjacent vocabulary sizes where the true vocabulary size lies.

Figure  6 demonstrates the robustness of the intelligent vocabulary size test. In the 
figure, the estimation for the robot test with a vocabulary size of 1400 begins with an 
undulating trend. The trend climbs as the robot answers correctly from quizzes 10 to 12, 
resulting in an upward leap. Fortunately, the trend then turns down and begins converg-
ing as the robot answers incorrectly from quizzes 14 to 16. As the estimated vocabulary 
size is close to the actual size, it takes more quizzes, from quizzes 16 to 28, to converge. 
From quiz 30 onwards, when the estimation is correct, the remaining trend is typical 
and similar to the majority of cases in Fig. 5. This shows that, with enough quizzes, the 
IVST can drive the trend and make a correct estimation in the end.

The experiment results confirm that failure cases appear rarely and the margin of error 
is always minimal, as shown in Fig. 7. The robot tester has an extensive vocabulary size 
of 2200 words. An ascending trend forms as they answer correctly in the initial process. 
Then, they answer incorrectly from quizzes 11 to 16 and correctly from 17 to 23. This 
small probability event drives the trend up and down, causing the IVST to overestimate 

Fig. 7 Results of a robot tester in group: 2200
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the vocabulary. In the end, the estimated vocabulary size is around 2300, only slightly 
higher. With additional sufficient quizzes, an accurate estimation is expected.

The results of experiment 2 are presented in Table 3, showing an impressive overall 
accuracy of 98.47%. This overall percentage is underscored by the individual group 
accuracies ranging from 94 to 100%, indicating that failure cases are extremely rare.

Results of experiment 3

In experiment 3, the classification results of the testing data of the 1500 new robot test-
ers validated the model. The accuracy results of the vocabulary sizes estimated by the 
IVST with the LSTM model are presented in Table 4. The even higher overall accuracy 
value of 99.87% showed that the LSTM model can successfully mitigate failure cases and 
was able to predict the vocabulary size more accurately by classifying the testing data of 
the new testers into correct groups.

Parameter sensitivity

Parameters impacted the results significantly. Robot testers can be employed to investi-
gate further the sensitivity of these parameters and optimize them. The most important 
parameters to consider are:

• β , which is the number of quizzes when the ANN model takes effect;
• θ̂↑ and θ̂↓ , which are the decimal values that represent thresholds for upgrading and 

downgrading, thus triggering leapfrog quizzes.

Figure 8 shows the accuracy results of the IVST with the LSTM model in a sensitivity 
experiment of the parameter β when setting θ̂↑ = 0.6 and θ̂↓ = 0.4 . The accuracy of the 
model changes significantly with different parameter β values. The lowest accuracy is 
observed when β = 10 , and the accuracy increases with larger β values. However, when 
β equals 40, the increasing trend flattens. Therefore, the value of 50 is chosen for β as it 
yields the highest overall accuracy of 99.97%, while larger values lead to heavier comput-
ing and more quizzes for testers.

Figure 9 shows that, with a static β value of 50, the sensitivity experiment starts from 
the parameters θ̂↑ = 0.9 and θ̂↓ = 0.1 . The large difference between the two parameters 
results in a significant decrease in accuracy. This occurrence is due to the strict values 
limiting the generation of leapfrog quizzes, thus restraining the convergence process. 
The best accuracy is achieved when setting θ̂↑ = 0.6 and θ̂↓ = 0.4 , as these values pro-
vide higher flexibility for the LSTM model to guide the convergence trend and achieve 
better results.

Table 3 The result of the intelligent test in each group

Group 200 400 600 800 1000

Accuracy 100% 100% 99% 99% 98%

Group 1200 1400 1600 1800 2000

Accuracy 99% 94% 99% 96% 96%

Group 2200 2400 2600 2800 3000

Accuracy 98% 99% 100% 100% 100%

Overall accuracy 98.47%
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Discussions

Implementations and reflections

The first experiment showed that 1500 robot testers are adequate for correctly simulat-
ing L2 learners’ vocabularies because the result value of accuracy became stable when 
processing more robot testers than quantity of 90 in each group. It also verified that the 
IVST along and with the LSTM model can handle the outliers, given sufficient robot 
testers and their testing data for training.

The second experiment demonstrated the IVST’s capability to estimate vocabulary size 
for any individual L2 learner of any population. The difficulty of precise estimation lies in 
the variance of vocabularies between L2 learners. The IVST handled this issue effectively, 
as most cases followed a similar trend of Fig. 5 to converge to the robot tester’s actual 
vocabulary size directly and smoothly. Occasionally, in some cases, the robot tester may 
continue answering challenging quizzes correctly and building up an increasing trend. 

Table 4 The result of the IVST with the LSTM model in each group

Group 200 400 600 800 1000

Accuracy 100% 100% 99% 100% 99%

Group 1200 1400 1600 1800 2000

Accuracy 100% 100% 100% 99% 99%

Group 2200 2400 2600 2800 3000

Accuracy 100% 100% 100% 100% 100%

Overall accuracy 99.87%

Fig. 8 Sensitivity of parameter β

Fig. 9 Sensitivity of parameter θ̂↑ and θ̂↓
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However, the IVST was robust enough to pull the trend back and make a correct esti-
mation, as long as the remaining quizzes were sufficient. The accuracy value of 98.47% 
confirmed that the IVST could make precise vocabulary size estimations in most cases.

The third experiment showed an even higher precise estimation capability of the 
LSTM model by classifying testers’ testing data into correct groups. Compared to the 
IVST, the LSTM model could extract the latent features of the grouped testing data and 
amend the rare failure cases, which had a minimal deviation from the correct value in 
experiment 2. The LSTM model effectively identified these failure cases and increased 
the accuracy to 99.87%.

Answers to the research questions

This study addresses the research questions by proposing a systematic approach for 
vocabulary size measurement, including robot testers, the intelligent vocabulary size 
test, and the LSTM model. The proposed methods are confirmed effective and can be 
verified in the experiments. The sub-questions are answered as follows:

RQ1: How to develop a factual verification method for vocabulary size measurement 
methods?

The current method for measuring vocabulary size cannot be convincingly evaluated 
due to the invisibility of any L2 learner’s vocabulary. To address this, we deduce the four 
constraints based on the notion that words with higher frequency are more likely to 
be met and then learned. Then, we first proposed and developed robot testers to best 
model L2 learners in terms of vocabulary and use them as a factual verification method. 
Created based on word frequency and randomization, the robot testers meet the four 
restrictions and model L2 learners accurately. With visible vocabularies, the robot testers 
then “take” the IVST and convincingly verify the effectiveness of the proposed vocabu-
lary size measurement methods. Furthermore, the robot testers are flexible enough to 
incorporate other factors that may be deemed relevant for future VST research.

RQ2: How to design a intelligent vocabulary size test that can be tailored to any 
population of L2 learners and can measure vocabulary size adaptively, accurately and 
efficiently?

A VST towards specific population is inadequate for accurately measuring vocabulary 
size due to its inability to accommodate all L2 learners. To address this, an intelligent 
vocabulary size test has been proposed that dynamically and adaptively generates quiz-
zes based on the tester’s vocabulary estimated by the ANN model in real-time. As the 
IVST progresses, it converged the estimated vocabulary size to the tester’s actual size. 
Experiment 2 has demonstrated that the IVST can efficiently and accurately measure 
vocabulary size within 60 quizzes.

RQ3: Can machine learning techniques be employed to assist the IVST to achieve 
high accuracy of assessing vocabulary size?

This research assumes that L2 learners with a specific vocabulary size most likely 
have commonly known words and should generate similar testing data in the IVST. 
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Therefore, this paper implements a LSTM model to extract latent features from 
the testing data of grouped robot testers labeled with specific vocabulary sizes. The 
model accurately classifies the testing data of any new one into correct groups and 
thus estimate their vocabulary size. The LSTM model achieves higher accuracy in 
experiment 3.

Applications

This study investigates the feasibility of creating robot testers to simulate L2 learners and 
verify vocabulary size measurement methods factually. While student models have been 
studied and discussed for many years, this paper proposes an initiative to implement a 
kind of student models in robot learners. Word frequency is a widely accepted parame-
ter for L2 development in vocabulary size measurement research. Therefore, using robot 
testers to represent L2 learners based on word frequency is compelling. This methodol-
ogy can be applied to other educational studies. Based on the accurate vocabulary size 
reported by the IVST, more precise teaching strategies can be suggested, more accurate 
learning plan can be designed and more specific sets of words can be provided for spe-
cific L2 learners to acquire. Actually, the proposed method has been integrated in an 
online English Learning Website. The IVST reported vocabulary sizes for L2 learners are 
accord with the instructors estimation.

Additionally, a new type of recursive learning, including the IVST testing step and the 
learning step to acquire artificial intelligence (AI) suggested words, is possible to be pro-
vided. With the assistance of AI, more discoveries and intelligent educational systems 
can be developed, optimized, and verified by robot learners.

Limitations and flexibility

This study is based on the widely accepted idea that the vocabularies of L2 learners are 
word-frequency-based. However, the study’s limitations become apparent if this notion 
changes significantly. In real-world applications, word acquisition route may be related 
with the diversity of L2 learners (age, native language, educational background, etc.). To 
address this, the proposed robot testers are flexible enough to incorporate other factors 
as variables which may be identified merit and necessary in the future VSTs. For exam-
ple, the expert knowledge of instructors can be used as a merit factor. The frequency 
order of words can be manually rearranged by instructors. The probabilities of the words 
acquired by robot testers are rearranged at the same time. As a result, the IVST adapts 
to the specific requirement in real-world. Furthermore, no changes are necessary for the 
IVST or the LSTM model for vocabulary size measurement.

Conclusion and future work
Measuring vocabulary in L2 learning is crucial, but current methods, such as vocabulary 
size tests (VSTs), are inflexible and often tailored to specific populations, limiting their 
representation of the diverse human vocabularies. This limitation can lead to discrepan-
cies in item accuracy and validity across different populations, highlighting the need for 
more comprehensive validation.
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To address these issues, this study proposed a systematic vocabulary size measure-
ment method that addressed the issues of traditional vocabulary size measurement 
methods, including limited factual verification and population specificity. The proposed 
method, which included robot testers, the intelligent vocabulary size test, and the long 
short-term memory model, is accurate, efficient, and factually verifiable.

The robot testers accurately modeled variant L2 learners by word-frequency-based 
and randomized vocabularies, and the proposed intelligent vocabulary size test accu-
rately, adaptively, and efficiently estimated vocabulary size within 60 quizzes based on 
the artificial neural network. The effectiveness of the method was validated by predicting 
1500 robot tester’s vocabulary sizes with an accuracy of 98.47%. Furthermore, the accu-
racy was further improved to 99.87% by applying the long short-term memory model to 
train the IVST testing data and make estimation through classification.

Future research will focus on exploring and incorporating additional factors related 
to vocabulary development into robot testers, such as cultural factors and individual 
learner differences. This study provides an initiative and practice case to incorporate 
student models into robot learners in educational research. With the help of artificial 
intelligence, robot learners can be developed to represent human learners for optimiza-
tion, evaluation, and verification in other educational research areas, including language 
learning and other subject domains.
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