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Abstract 

C-Test is a gap-filling test designed to measure first and second language proficiency. 
Over the past four decades, researchers have shown the fit of C-Test data to paramet-
ric item response theory (IRT) models, but no study so far has shown the fit of C-Tests 
to nonparametric IRT models. The purpose of this study is to contribute to the ongo-
ing C-Test validation project by providing evidence of fit to the Mokken scale analysis 
as a widely used nonparametric IRT model. A six-passage C-Test battery was analyzed 
using the monotone homogeneity model and the double monotonicity model 
of Mokken. Unidimensionality was evaluated using the automatic item selection proce-
dure. Findings showed that the C-Test passages form a strong unidimensional scale, fit 
well to the monotone homogeneity model, and, after deleting one item, have a suf-
ficient fit to the double monotonicity model. The findings also indicated that the items 
form a hierarchy, and persons can be located on an ordinal scale using their C-Test sum 
scores. Implications of the study for C-Test validity and application are discussed.
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Introduction
C-Test is a gap-filling test designed to measure language proficiency in both first and 
second language (Klein-Braley, 1985). A C-Test is composed of four to eight short inde-
pendent texts in which the second half of every second words is deleted. Deletions start 
from the second sentence. The first and the last sentences in each passage remain intact 
to provide some context for text processing. Examinees have to fill in the missing letters. 
Raatz and Klein-Braley (1982) proposed the C-Test as an improvement over the classi-
cal cloze test. They argued that cloze test suffers from some problems including change 
in the  test’s psychometric qualities with the change of onset of deletions and deletion 
rates. Several studies showed that C-Tests with different points of onset of deletions and 
different rates of deletions have different difficulty levels and have different correlation 
coefficients with external criteria (Alderson, 1983; Raatz & Klein-Braley, 1982). By fixing 
the rate and the point of onset of deletions, Klein-Braley aimed at a more stable con-
struct for the C-Test compared with the cloze test. By deleting every other word, a larger 
portion and more varied words (parts of speech) are deleted in a C-Test resulting in a 
more representative sample of language compared to cloze test. Furthermore, a C-Test 
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is composed of at least four passages, and thus, more text types and text forms can be 
included, and the chances that some examinees are favored or disadvantaged because of 
text familiarity are extremely reduced.

C-Test is based on the reduced redundancy principle (RRP; Spolsky, 1971). The 
RRP basically states that languages contain redundant elements, i.e., elements that get 
repeated constantly. Redundancy exits in the language to protect it against noise and 
misunderstanding. When we write and speak, we have a single message, but we repeat 
the message in different forms and with different words to ascertain that the message is 
clearly communicated. The RRP was used by Spolsky (1969) and Spolskey et al. (1968) to 
develop the noise test and later was used to account for other tests including the cloze 
test and the C-Test. Spolsky argued that since language contains redundancy, a native 
speaker of a language or a proficient nonnative user of the language should be able to 
understand it when some parts are deleted. C-Tests have been used in several testing 
projects as a measure of language ability.

C-Test is used as anchor items in the TestDaf (Eckes & Grotjhan, 2006) which is a 
standardized test of German as a foreign language for those who want to study in Ger-
man universities. C-Test is also used as a placement test for learners of German as a 
foreign language who want to assess their German language knowledge. Numerous 
researchers have used the C-Test as an overall language proficiency test in studies in sec-
ond language acquisition (SLA) research (Nadri et al., 2019). In SLA studies, research-
ers usually need to control for participants’ language ability or to measure its impact on 
other variables of their interest. In other studies, they simply need to know correlates of 
second language proficiency. In such studies, where administration of a complete lan-
guage proficiency test like the TOEFL (Test of English as a Foreign Language) or IELTS 
(International English Language Testing System) is time-consuming or expensive, C-Test 
is a quick, economical, and precise overall test of second language ability (Norris, 2018).

Over the past four decades, since the introduction of C-Test, numerous studies have 
shown that C-Test is a valid and reliable measure of first and second language ability 
(Grotjahn & Drackert, 2020a, 2020b; Motallebzadeh, 2023). Correlational studies have 
all shown that C-Test highly correlates with other tests of language skills and compo-
nents even with listening and speaking (Sigott, 2004). Factorial analyses have shown that 
C-Tests load on a general factor of language proficiency along with other language tests 
(Grotjahn, 1992; Raatz, 1984; Rasoli, 2021). Other validation methods, like verbal pro-
tocol analyses and studies of sensitivity to learning, have indicated that C-Test is a valid 
and reliable measure of second and first language competence (Baur & Meder, 1994; 
Borgards & Raatz, 2002; Bolten, 1992; Coleman, 1994; Stemmer, 1991, 1992).

From the early days of the introduction of C-Tests, they have been analyzed with 
different item response theory (IRT) models (Alpizar et al., 2023; Arras et al., 2002; 
Baghaei, 2010; Baghaei & Christensen, 2023; Baghaei & Grotjahn, 2014a, 2014b; Eckes 
& Grotjahn, 2006; Forthmann et al., 2020; Grotjahn, 1992; Rattz, 1984). IRT is a set of 
psychometric models which define a relationship between a latent trait (like language 
proficiency) and performance on the items. IRT models rest on three assumptions 
of unidimensionality, local independence, and monotonicity (Hambleton et al., 1991). 
If an IRT model fits the data, then persons and items can be located on a unidimen-
sional latent variable with interval scale properties, and the test is measuring a single 
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latent trait, i.e., unidimensionality holds, and thus, extraneous variables have not con-
taminated the test, and examinees can be placed on an interval scale. Besides, if an 
IRT model fits, the raw total score can be used for placing examinees on an ordinal 
scale (Sijtsma, 1984, 1998).

Mokken scale analysis
Mokken models

Mokken scale analysis (MSA), named after the Dutch mathematician and political 
scientist Robert J. Mokken, is a set of two nonparametric IRT (NIRT) models for scale 
construction and a procedure for assessing unidimensionality using the Automatic 
Item Selection Procedure (AISP, Baghaei, 2021; Tabatabaee-Yazdi et  al., 2021). The 
two NIRT models included under the MSA are the monotone homogeneity model 
(MHM) and the double monotonicity model (DMM; Mokken, 1971). MHM has the 
three assumptions of unidimensionality, local independence, and monotonicity. The 
DMM model contains these three assumptions plus another assumption referred to 
as nonintersecting item response functions or invariant item ordering (IIO; Sijtsma & 
Molenaar, 2002).

The first assumption, unidimensionality, suggests that all items are measuring a 
common underlying trait, denoted as θ (Straat et al., 2013). In the framework of IRT, 
it is assumed that a single dominant latent trait governs responses to items within 
a scale, which is referred to as unidimensionality (Hulin et  al., 1983). The second 
assumption is local independence. It implies that an individual’s response to one 
item is entirely unrelated to their responses to any other item. The third assumption, 
known as the monotonicity of the item response functions (IRF), posits that IRFs are 
always monotonically increasing functions of the latent trait θ. In simpler terms, this 
means that as the latent trait level (θ) increases, the probability of an individual pro-
viding a correct response on an item also increases. Additionally, the non-intersection 
assumption, which includes the concept of IIO for dichotomous data (Sijtsma et al., 
2011), states that the IRFs of items should not intersect. When the IIO assumption 
holds true for a set of items, it signifies that the items can be arranged in a hierarchi-
cal order from the easiest to the most difficult.

Mokken scale analysis is considered a nonparametric IRT model because it contains 
no parametric function to define the relationship between the latent trait and item 
responses. Consequently, unlike parametric IRT models, no person or item param-
eters can be estimated from the model. In parametric IRT models, such as the Rasch 
model or the two-parameter logistic model, specific functional forms are assumed for 
the relationship between item responses and the underlying latent trait. The MHM 
enables the arrangement of individuals along the latent trait using the sum of their 
item scores. On the other hand, the DMM not only permits the ordering of individu-
als based on the sum of their scores but also ensures an invariant ordering of items 
in terms of difficulty (proportion correct), known as IIO. The IIO property is essen-
tial for establishing hierarchical scales, as it ensures that the order of item difficul-
ties remain consistent across all respondents, regardless of their specific values on the 
latent trait, as highlighted by Sijtsma and Junker (1996).
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Scalability coefficients

MSA relies on three scalability coefficients as model fit values, namely, the item-pair scal-
ability coefficient (Hij), the item scalability coefficient (Hi), and the total scale scalability 
coefficient (H). These coefficients play a crucial role in assessing the quality and properties 
of a scale. The coefficient of scalability for a pair of items is calculated as the ratio of the 
covariance between the two items to their maximum obtainable covariance, based on the 
marginal distribution of the two items. Essentially, Hij measures the internal consistency of 
each pair of items. Hi represents the ratio of the sum of all pairwise covariances involving 
item i to the sum of all pairwise maximum covariances related to that specific item. The Hi 
statistic assesses the scalability of an individual item within the context of the entire set of 
items. And finally, the homogeneity index for an entire scale H is determined by the ratio 
of the sum of all pairwise covariances among items to the sum of all pairwise maximum 
covariances or, alternatively, as the ratio of the sum of all observed errors to the expected 
errors. The H index provides insight into the internal consistency of the entire scale.

MSA for polytomous items

Mokken scaling has also been extended to analyze polytomous items (Hemker & Sijtsma, 
1995; Sijtsma et  al., 1990). The underlying principles remain consistent, but the analysis 
goes beyond just item characteristic curves (ICCs) and involves examining responses at 
each level within the items, such as the response options on a Likert-type scale. The result-
ing relationship between these responses and the latent trait score can be represented using 
item step response functions (ISRFs). ISRFs represent the responses at each step or level of 
the scale. For instance, in a Likert scale with five response categories, there are four steps 
between these categories, resulting in four ISRFs. ISRFs play a central role in the analysis of 
polytomous items using Mokken scaling. The procedure for determining if a set of polyto-
mous items forms a Mokken scale follows a similar procedure to that used for dichotomous 
items. Similar diagnostic tools also exist to assess whether MHM and DMM hold for poly-
tomous items.

Assessing unidimensionality

Mokken (1971) introduced an automated item selection procedure (AISP) designed to 
choose multiple items measuring the same trait. AISP is used for automatically searching 
and identifying unidimensional scales (sets of items) from a larger item pool. AISP begins 
by selecting the two items that have the largest Hij coefficient (greater than a prespecified 
cutoff value). Next, items that have Hi values greater than the prespecified cutoff values 
with the already selected items are added one by one until no items remain that have Hi 
values larger than the cutoff value. Then, the algorithm repeats this procedure to form a 
second scale from the remaining items and so on. The algorithm stops when no more items 
meet these criteria. Items which are not selected are referred to as unscalable.

The present study
As explained before, researchers have mostly used the family of Rasch models (Rasch, 
1960/1980) for the analysis of C-Tests. The Rasch model is a parametric IRT (PIRT) 
model with very strict assumptions. PIRT models, in general, impose a certain math-
ematical shape for the relationship between the latent trait and the item responses. That 
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is, the relationship between the latent trait and item response should be of logistic shape 
(i.e., S-shaped based on the logistic function that is employed to define the relationship 
between the items responses and the latent trait). If this requirement is not satisfied, the 
item is rejected as a misfit. The relation between the latent variable and the probability 
of getting an item right or endorsing a response option can be characterized by a mono-
tonically increasing function (Rajlic, 2020). This function is known as IRF, graphically 
shown by an ICC. PIRT models are very strict as the IRFs should follow the functional 
shape that the model imposes.

Mokken (1971) states that PIRT models are appropriate in contexts where the underly-
ing trait which causes the response is deeply understood and known. In contexts where 
the latent variable is not known, such as affective variables, NIRT models work better. 
Although it is generally argued and has empirically been shown that the C-Test is an 
overall measure of first and second language proficiency, several researchers have failed 
to demonstrate what construct(s) exactly underlies the C-Test (Sigott, 2004). Some 
researchers have arrived at mixed results concerning whether the C-Test is a micro-
level test or a macro-level test (Stemmer, 1991, 1992). Some argue that it is a vocabu-
lary test, while others state that it tests beyond vocabulary and taps deeper linguistic 
knowledge (Sigott, 2004). Sigott (2004) proposed the fluid construct phenomenon and 
stated that the C-Test construct changes with person ability and test difficulty. That is, 
the C-Test construct changes for different test takers depending on the proficiency level. 
These studies suggest that NIRT models should be a better choice for analyzing C-Tests 
as the construct underlying the C-Test is not clearly known. Furthermore, Scheiblechner 
(1999) states that there is little evidence that psychological and mental variables behave 
according to the logistic function (which is imposed by the PIRT models). NIRT models 
do not impose a certain functional shape for the ICC and thus are more flexible. The 
purpose of this study is to show that NIRT models are suitable for C-Tests. The sec-
ondary goal of the study is to provide additional validity evidence for C-Test using MSA 
(Mokken, 1971) as a NIRT model. Specifically, the research questions are addressed:

1.	 Are C-Tests unidimensional based on the Automatic Item Selection Procedure 
(AISP) of the MSA?

2.	 Do C-Tests satisfy the monotonicity assumption?
3.	 Do C-Tests satisfy the double monotonicity assumption?

Methodology
Participants

For the purpose of this study, 271 (179 female and 92 male) undergraduate university 
students of English at universities in Khorasan Razavi, Iran, were recruited. Students of 
TEFL (teaching English as a foreign language), translation, and literature were selected. 
The age range of the participants was between 18 and 35 (M = 22.73, SD = 3.59). All par-
ticipants gave their informed consent for inclusion before they participated in the study. 
The study was conducted in accordance with the Declaration of Helsinki, and the pro-
tocol was approved by the Ethics Committee of the Islamic Azad University, Torbat-e 
Heydarieh Branch.
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Instrument

A C-Test battery was developed by the researchers for this study. The C-Test contained 
six short independent passages. The texts were selected from graded reading compre-
hension passages available from the British Council website. The reading comprehension 
exercises on this website are graded and categorized under six levels of A1, A2, B1, B2, 
C1, and C2. One text was selected from each level. By selecting texts from all levels of 
the Common European Framework (CEF), we made sure that the C-Test targets all the 
students at all levels.

The six passages were ordered from the easiest to the hardest based on the British 
Council website grading. The rule of two (Raatz & Klein-Braley, 2002) was applied to 
convert the passages into C-Tests. That is, the second half of every second word was 
deleted, leaving the first and the last sentences in each passage intact to provide enough 
context for text processing. Twenty words were mutilated in each passage, but proper 
nouns were not damaged. For words with an even number of letters, the larger parts 
were deleted. A solid line with a fixed length represented the deleted letters in each 
word. This means that no clue as regards the number of deleted letters was given to the 
examinees (Grotjahn, 2019).

Procedure

The C-Test was distributed among undergraduate university students of English in dif-
ferent Khorasan Razavi universities. The C-Test was administrated in reading compre-
hension courses as a section of their mid-term or final examinations. For scoring, exact 
word scoring with correct spelling was used. According to Grotjahn (2019), this method 
of scoring yields the most reliable scores. One point was given for each correct recon-
struction. The collected data was entered into Excel, and the following analyses were 
performed:

1.	 Dimensionality was evaluated using Mokken’s (1971) Automatic Item Selection Pro-
cedure (AISP).

2.	 Reliability was assessed using different methods.
3.	 The monotone homogeneity model (MHM) of Mokken was checked by examining 

coefficients of scalability and item response functions.
4.	 The double monotonicity model (DMM) of Mokken was checked by examining the 

intersection of all pairs of IRFs graphically and statistically.

The Mokken package (van der Ark, 2012) in R (R core team) was used for all the 
analyses.

Results
Dimensionality and reliability

Table 1 shows the descriptive statistics for the six C-Test passages. To avoid confusion 
and make full use of the mokken package, the C-Test passages were rescored to have 
seven categories instead of 21. That is, every three neighboring categories were merged. 
AISP with 0.30 as the lower bound of scalability coefficient for scale construction 
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showed that all the items belong to scale 1 which indicates a unidimensional scale. The 
Mokken package estimates different reliability coefficients. The Mokken reliability, alpha, 
lambda, and LCRC reliabilities were 0.969, 0.965, 0.967, and 0.964, respectively. These 
coefficients indicate a highly reliable test.

Scalability coefficients

Table 2 shows item and item pair scalability coefficients Hi and Hij and their standard 
errors (in brackets). As Table 1 shows, all scalability coefficients Hi and Hij are positive 
and above 0.30. The smallest coefficient is 0.83. Item scalability coefficients Hi are in the 
last row. Hi is the main statistic to evaluate the MHM (Baghaei, 2021). It indicates item 
discrimination and fit to the MHM. Items with weak discrimination do not contribute to 
reliable ordering of examinees and should be discarded. The lower bound for accepting 
an item as fit to the MHM is Hi > 0.30 (Mokken, 1971). As Table 1 shows, all Hi values are 
positive and above 0.30.

Table 3 shows the monotonicity and IIO statistics. As can be seen, none of the items 
violates the monotonicity assumption. Column “ac” refers to the number of active com-
parisons, and column “vi” shows the number of violations which is zero here, i.e., no 
items violate the assumption of monotonicity. The column “sig” shows the number of 
significant violation, and column “crit” is a general index of fit. High crit values are not 
good and show that the items are poor (Baghaei, 2021). Table 3 shows that the crit values 
for all the items are zero, which is the perfect value.

The scalability coefficient H for the whole test and its standard error were 0.88 and 
0.013, respectively. According to Mokken (1971), H-values greater than 0.50 indicate a 
strong scale.

Table 1  Descriptive statistics

Range Mean SD Skewness Kurtosis

Item1 5.00 4.78 1.18  − 0.90 0.20

Item2 5.00 5.11 1.16  − 1.18 0.48

Item3 5.00 4.47 1.44  − 0.79 − 0.37

Item4 5.00 4.64 1.35  − 0.65 − 0.78

Item5 5.00 5.04 1.29  − 1.17 0.36

Item6 6.00 4.59 1.62  − 0.81 − 0.58

Table 2  Item and item pair scalability coefficients and their standard errors

Item1 Item2 Item3 Item4 Item5 Item6

Item1 0.883 (0.023) 0.830 (0.023) 0.847 (0.021) 0.875 (0.022) 0.872 (0.022)

Item2 0.878 (0.022) 0.899 (0.018) 0.877 (0.021) 0.853 (0.029)

Item3 0.880 (0.018) 0.926 (0.014) 0.894 (0.023)

Item4 0.927 (0.013) 0.904 (0.021)

Item5 0.888 (0.029)

Item6

Hi (SE) 0.860 (0.016) 0.877 (0.016) 0.883 (0.013) 0.892 (0.011) 0.900 (0.014) 0.884 (0.022)
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The statistics, H, Hi, and Hij, play a crucial role in constructing and evaluating the 
MHM. To account for chance variations, the null hypothesis is tested whether H, Hi, 
or Hij is equal to zero in the population. This is done by computing the 95% confidence 
intervals around the coefficients, that is, by adding and subtracting the coefficient’s value 
with two times its standard error. If the interval does not include zero, the null hypothe-
sis that the coefficient is equal to zero in the population can be rejected. A Mokken scale 
is considered to exist when certain conditions are met:

1.	 Each pair-wise homogeneity coefficient, Hij, should be greater than 0.
2.	 Each individual item’s homogeneity coefficient, Hi, should be greater than 0.30.
3.	 Additionally, the overall homogeneity coefficient for the entire scale, H, should also 

exceed 0.30.

When these three conditions are satisfied, it signifies the presence of monotone homo-
geneity. This can be summarized as follows: (a) The items within the scale collectively 
reflect a single underlying latent construct, (b) the assumption of local independence 
holds, and (c) for each item, the higher a respondent is on the latent construct contin-
uum, the higher the likelihood of a positive response (“person ordering is item-free”).

Invariant item ordering

Once a scale is identified as monotone homogeneous, it needs further scrutiny for dou-
ble monotonicity. Double monotonicity entails that the ordering of items should be 
consistent across different groups of respondents, or in simpler terms, item response 
functions should not intersect (“item ordering is person-free”).

Table 3 also shows the IIO statistics. “ac” indicates the total number of active pairs, “vi” 
shows the total number of violations, “sig” shows the number of significant violations, 
and the “crit” value is a weighted sum of the other elements like “Hi” and “#ac.” High 
“crit” values indicate poor items. “crit” is an index meant as an overall index of fit to the 
property that is being investigated (0 is perfect; higher is worse). Table 3 shows that item 
6 has two violations (with items 1 and 4). In other words, the IRF for this item intersects 
with the IRF of two other items. Since it has the highest number of violations, it is a good 
candidate to be removed from the test. Removing this item fixes the intersection of other 
items with this item. That is, after removing item 6, none of the items has a significant 
violation of IIO. After omitting item 6, the HT was 0.34.

Table 3  Monotonicity and IIO output

Monotonicity IIO

ac Vi Sig Crit ac Vi Sig Crit

Item1 10 0 0 0 13 1 1 65

Item2 5 0 0 0 13 0 0 0

Item3 8 0 0 0 15 0 0 0

Item4 3 0 0 0 13 1 1 54

Item5 5 0 0 0 14 0 0 0

Item6 14 0 0 0 14 2 2 95
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Figure 1 shows the IRFs for item pairs. It shows that the IRF for item 6 intersects 
with the IRFs of items 1 and 4. The IRFs of other items do not intersect. Molenaar and 
Sijtsma (2000) introduced the coefficient HT to assess whether curves intersect. HT is 
a measure of IIO and stands for scalability coefficient H computed for the transposed 
data set, that is, a data set in which the position of columns (items) is reversed with 
the position of rows (persons). If IIO holds, 0.30 < HT ≤ 0.40 indicates a weak order-
ing, 0.40 < HT ≤ 0.50 shows a moderate ordering, and HT > 0.50 shows a strong order-
ing (Ligtvoet et al., 2010). Under the conditions that there are no (serious) violations 
of manifest invariant item ordering (MIIO), HT is a measure of how well the items can 
be ordered invariantly. Findings showed that HT value after deleting item 6 was 0.34 
which indicates a weak ordering (Ligtvoet et al., 2010). HT, in fact, provides informa-
tion about the spread of the IRFs. The farther the IRFs, the higher the HT is. That is, 
when IRFs are farther from each other, there is more confidence in IIO.

Discussion
This study explained how the nonparametric monotone homogeneity model and the 
double monotonicity model contribute to the construction of scales for the measure-
ment of language proficiency. The MHM is more general than the parametric IRT 
models (Hemker et  al., 1997), such as the rating scale model (Andrich, 1978) and the 
partial credit model (Masters, 1982) which are mostly used for the analysis of C-Tests. 
Hemker et al. (1997) showed that all parametric IRT models for polytomous items are 
special cases of the nonparametric MHM. Therefore, any test that satisfies the require-
ments of a parametric IRT model for polytomous items also satisfies the requirements 
of the nonparametric MHM. Since the MHM is a more general and a more flexible 
model compared to its parametric counterparts, its application leads to the retainment 
of more items and, thus, longer scales. Furthermore, since the total score and the esti-
mated latent trait theta have the same rank order information, the nonparametric MHM 
is highly applicable for person measurement.

In the C-Test context, we often know very little about the psychometric properties of 
newly developed batteries. With a typical nonparametric analysis, test developers can 
examine the dimensionality of the data and evaluate model assumptions such as mono-
tonicity and study the shapes of the IRFs in order to learn more about the (mal-)func-
tioning of individual passages (Baghaei & Effatpamah, 2024; Effatpanah & Baghaei, 2023, 
2022). Applying this methodology, researchers can construct scales on which groups can 
be compared and changes monitored without making unnecessary restrictive assump-
tions about the behavior of the data (i.e., adherence to a functional form). One reason 
for misfit of items to parametric IRT models is that the empirical IRFs, although being 
monotone, do not follow the logistic shape required by many parametric IRT models. 
Nonparametric MHM and DMM relax the assumption of a functional form for the IRFs 
and are, therefore, more flexible and less restrictive. However, note that this flexibility 
comes at a price: nonparametric IRT models do not allow the construction of interval 
scales, and person and item scores are at ordinal scale level.

When the MHM fits the data, the fit of a parametric model such as the rating 
scale model or the partial credit model may be investigated. However, if one pursues 
a parametric IRT model from the outset, misfit may be a good reason to shift to a 
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Fig. 1  IRFs for pairs of items to check non-intersection
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nonparametric IRT model. An NIRT model still allows the researchers to have an ordi-
nal scale. However, if computer adaptive testing (CAT) is needed to be implemented, a 
parametric model should be used provided that the model fits the data well.

Overall, the C-Test evaluated in this study showed robust psychometric qualities. 
More specifically, we found that it has satisfactory monotonicity, scalability, invariant 
item ordering (with only one significant violation), and reliability. This is an overall sat-
isfactory set of results, which would lead us to encourage the use of C-Tests in language 
education. Evidence for monotonicity and invariant item ordering along with unidimen-
sionality support the fit of the double monotonicity model.

The fit of the DMM presents several advantages for the use of C-Test in practice (Ligt-
voet et al., 2010). First, the monotonicity of item responses suggests that, even if the par-
ametric RSM and PCM do not fit, there is support for the C-Test sum scores to order 
persons based on their ability. Second, the passages in this C-Test battery were concep-
tualized to have a hierarchical structure, i.e., they were selected and arranged in order of 
difficulty based on some theoretical criteria. Evidence for invariant item ordering sup-
ports such a hypothetical structure for the test. Test developers and practitioners gener-
ally assume, that, because an item i has a higher success rate than another item j, then 
item i is necessarily easier than j for all examinees along the entire range of the scale, and 
they often use a test as though this assumption was true, without empirically testing it 
(Ligtvoet et al., 2010). The current study provides evidence that it is empirically justified 
to make such interpretations from the current C-Test data.

Our findings showed that item 6 had two significant violations of IIO. While usually 
the recommendation under such circumstances is to remove the intersecting item, we 
would recommend keeping this item. This is because the IRFs suggest that this items’ 
response function is monotone, and its intersections with the item response functions 
of items 1 and 4 are very little, as the confidence intervals (the shaded area around the 
IRFs) overlap for most ability levels (Myszkowski, 2020). The current study suggests that 
future researchers applying this C-Test use the full instrument, even though they may 
question and study their own dataset to decide on whether to use item 6 in the scoring 
or not. Alternatively, the item may be used as a training item at the beginning of the test 
but is not included in scoring.

Limitations and future directions

A possible reason for the violation of IIO could be the close difficulty of the items. As 
Table 1 shows, the item means are very close to each other. Consequently, the items do 
not have much leeway to maneuver (Ligtvoet et al., 2010). This suggests that the instru-
ment can further be improved by selecting passages and constructing C-Test items that 
differ more in difficulty. This might result in a C-Test whose items can invariably be 
ordered.

This study has some limitations that stem from the MSA framework. MSA does not 
provide a way to study or recover information from the response options or categories 
like other approaches—such as the PCM (Masters, 1982). MSA does graphically pro-
vide item step response functions, but because ISRFs in MSA are increasing by defini-
tion, it is not possible to evaluate the (mal-)functioning of the response categories. This 
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is a limiting factor in this context, as previous studies with Likert-type items suggest 
that some response items may not function well and need to be merged with adjacent 
categories (Bond et al., 2020). Another limitation of MSA is that it does not provide a 
way to investigate conditional reliability, and therefore does not allow to monitor if an 
instrument provides reliable ability scores across a wide range of the ability scale. This 
is particularly a problem as it implies that the instrument is reliable across the entire 
range of abilities that are measured. Finally, other advanced uses of PIRT models, such as 
computer-adaptive testing and test equating, are impossible with Mokken scaling (Mei-
jer et al., 1990).

The current study demonstrates how Mokken scale analysis can provide insightful 
information about a test form which has already been studied for decades with multiple 
modern and classical methods (see Grotjahn & Drackert, 2020a, 2020b). We suggest that 
future studies investigate the psychometric qualities of C-Tests using other nonpara-
metric IRT models—such as, the spline IRT models (Winsberg et al., 1984) and Kernel 
Smoothing IRT (Ramsay, 1991)—to better understand its functioning.

Conclusion
This study provided valuable insights into the validity of the C-Test format using 
the MHM and the DMM of the Mokken scale analysis. The main findings indicate 
that the C-Test analyzed in this study exhibits strong evidence of unidimensionality 
which is an important aspect of validity (Messick, 1989). Furthermore, all the items 
in the C-Test conformed to the monotonicity principle of the MHM. The monoto-
nicity principle implies that as a person’s proficiency in the construct being meas-
ured increases, their likelihood of correctly answering each item also increases. This 
indicates that there is a causal relationship between the construct and the test scores 
which is an important aspect of validity in the instrument-based account of validity 
(Baghaei, 2021; Borsboom et al., 2004). The fit of the MHM implies that persons can 
be ordered on the latent construct with their C-Test sum scores, and their order is the 
same regardless of the subset of items that is used. Therefore, the C-Test can be used 
for placing learners into appropriate language programs, tracking their progress, and 
making informed decisions regarding their language education.

The fit of the DMM is evidence that the difficulty of the C-Test items remains the 
same across the ability scale. The implication is that C-Test is fair, invariant, and 
unbiased. This implies that educators and language teachers can design instructional 
materials that align with different proficiency levels using C-Tests. A valid and reliable 
C-Test can be a time-efficient tool for assessing foreign language proficiency, particu-
larly in settings where administering longer, more comprehensive exams may not be 
practical. This study demonstrates that the C-Test format is a valid and reliable tool 
for measuring foreign language proficiency. It can support more effective language 
learning, fair and consistent evaluation, and contribute to the improvement of foreign 
language education programs and assessments.

Abbreviations
SLA	� Second language acquisition
TOEFL	� Test of English as a Foreign Language
ILETS	� International English Language System



Page 13 of 15Shoahosseini et al. Language Testing in Asia           (2024) 14:10 	

IRT	� Item response theory
NIRT	� Nonparametric item response theory
PIRT	� Parametric item response theory
TEFL	� Teaching English as a Foreign Language
CEF	� Common European Framework
ICC	� Item characteristic curves
MSA	� Mokken scale analysis
MHM	� Monotone homogeneity model
DMM	� Double monotonicity model
AISP	� Automatic item selection procedure
LCRC​	� Latent class reliability coefficient
IIO	� Invariant item ordering
IRF	� Item response functions
MIIO	� Manifest invariant item ordering

Acknowledgements
The authors would like to thank the participants of the study as well as the instructors who collaborated in the data 
collection process.

Authors’ contributions
RS collected the data, performed the analyses, and wrote the first draft of the manuscript. PB conceived, designed, and 
closely monitored the analyses. HK and HA read the manuscript and contributed to its consistency and coherence.

Funding
The authors did not receive any funding for this research.

Availability of data and materials
The data associated with this study will be available upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 29 December 2023   Accepted: 25 February 2024

References
Alderson JC, (1983). The cloze procedure and proficiency in English as a foreign language. In J. W. Jr. Oller (Ed.), Issues in 

language testing research (pp. 205‒217). Newbury House. https://​doi.​org/​10.​2307/​35862​11
Alpizar, D., Li, T., Norris, J. M., & Gu, L. (2023). Psychometric approaches to analyzing C-tests. Language Testing, 40(1), 107–132. 

https://​doi.​org/​10.​1177/​02655​32221​10621​38
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573. https://​doi.​org/​10.​

1007/​bf022​93814
Arras, U., Eckes, T., & Grotjahn, R. (2002). C-Tests im Rahmen des Test Deutsch als Fremdsprache (TestDaF): Erste Forschung-

sergebnisse. In R. Grotjahn (Ed.), Der C-Test: Theoretische grundlagen und praktische Anwendungen (Vol. 4, pp. 175–209). 
Bochum: AKS-Verlag.

Baghaei, P. (2010). An investigation of the invariance of Rasch item and person measures in a C-Test. In R. Grotjahn (Ed.), Der 
C-Test: Beiträge aus der aktuellen Forschung/ The C-Test: Contributions from CurrentResearch (pp. 100–112). Frankfurt/M.: 
Lang.

Baghaei, P. (2021). Mokken scale analysis in language assessment. Münster: Waxmann.
Baghaei, P., & Christensen, K. B. (2023). Modelling local item dependence in C-tests with the loglinear Rasch model. Language 

Testing, 40(3), 820–827. https://​doi.​org/​10.​1177/​02655​32223​11551​09
Baghaei, P., & Effatpanah, F. (2024). Nonparametric kernel smoothing item response theory analysis of Likertitems. Psych, 6(1), 

236–260. https://​doi.​org/​10.​3390/​psych​60100​15
Baghaei, P., & Grotjahn, R. (2014a). Establishing the construct validity of conversational C-Tests using amultidimensional Item 

Response Model. Psychological Test and Assessment Modeling, 56, 60–82.
Baghaei, P., & Grotjahn, R. (2014b). The validity of C-Tests as measures of academic and everyday language proficiency: A 

multidimensional item response modeling study. In R. Grotjahn (Ed.). Der C-Test: Aktuelle Tendenzen/The C-Test: Current 
trends (pp. 163-171.). Frankfurt/M.: Lang.

Baur, R. S., & Meder, G. (1994). C-Tests zur ermittlung der globalen sprachfähigkeit im Deutschen und in der muttersprache bei 
ausländischen schülern in der bundesrepublik Deutschland. In R. Grotjahn (Ed.), Der C-Test: Theoretische grundlagen und 
praktische anwendungen (Vol. 2, pp. 151–178). Bochum: Brockmeyer.

Bolten, J. (1992). Wie schwierig ist ein C-Test? Erfahrungen mit dem C-Test als einstufungstest in hochschulkursen Deutsch als 
fremdsprache. In R. Grotjahn (Ed.), Der C-Test. Theoretische grundlagen und praktische anwendungen (Vol. 1, pp. 193‒203). 
Bochum: Brockmeyer.

Bond, T. G., Yan, Z., & Heene, M. (2020). Applying the Rasch model: Fundamental measurement in the human sciences (4th Ed.). 
New York: Routledge.

https://doi.org/10.2307/3586211
https://doi.org/10.1177/02655322211062138
https://doi.org/10.1007/bf02293814
https://doi.org/10.1007/bf02293814
https://doi.org/10.1177/02655322231155109
https://doi.org/10.3390/psych6010015


Page 14 of 15Shoahosseini et al. Language Testing in Asia           (2024) 14:10 

Borgards, S., & Raatz, U. (2002). Sind C-Tests trainierbar? In R. Grotjahn (Ed.), D er C-Test: TheoretischeGrundlagen und praktische 
Anwen-dungen (Vol. 4, pp. 157–174). Bochum: AKS-Verlag.

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071. 
https://​doi.​org/​10.​1037/​0033-​295X.​111.4.​1061

Coleman, J. A. (1994). Degrees of proficiency: assessing the progress and achievement of university language learners. French 
Studies Bulletin, 50, 11–16.

Eckes, T., & Grotjahn, R. (2006). A closer look at the construct validity of C-tests. Language Testing, 23, 290–325. https://​doi.​org/​
10.​1093/​frebul/​15.​50.​11

Effatpanah, F., & Baghaei, P. (2022). Exploring rater quality in rater-mediated assessment using the nonparametricitem charac-
teristic curve estimation. Psychological Test and Assessment Modeling, 64(3), 216–252.

Effatpanah, F., & Baghaei, P. (2023). Kernel smoothing item response theory in R: A didactic.P ractical Assessment, Research, 
and Evaluation, 28, Article 7. https://​doi.​org/​10.​7275/​pare.​1261

Forthmann, B., Grotjahn, R., Doebler, P., & Baghaei, P. (2020). A comparison of different item response theory models for scaling 
speeded C-tests. Journal of Psychoeducational Assessment, 38, 692–705. https://​doi.​org/​10.​1177/​07342​82919​889262

Grotjahn, R., & Drackert, A. (2020). The electronic C-test bibliography: Version October 2020. Available at: http://​www.c-​test.​de & 
https://​www.​ruhr-​uni-​bochum.​de/​sprac​hetes​ten/​index.​html.​de

Grotjahn, R. (1992). Der C-Test: Einleitende Bemerkungen. In R. Grotjahn (Ed.), Der C-Test: Theoretische grundlagen und praktische 
anwendungen (Vol. 1, pp. 1–18). Bochum: Brockmeyer.

Grotjahn, R. (2019). C-Tests. In S. Jeuk & J. Settinieri (Eds.), Sprachdiagnostik Deutsch als zweitsprache: Ein handbuch (pp. 
579–603). De Gruyter Mouton.

Grotjahn, R., & Drackert, A. (2020). The electronic C-test bibliography: Version October 2020. Available at http://​www.c-​test.​de
Hambleton, R., Swaminathan, H., & Rogers, H. (1991). Fundamentals of item response theory. Sage.
Hemker, B. T., & Sijtsma, K. (1995). Selection of unidimensional scales from a multidimensional item bank in the polytmous 

Mokken IRT model. Applied Psychological Measurement, 19, 337–352.
Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the latent trait and the sum score in 

polytomous IRT models. Psychometrika, 62(3), 331–347. https://​doi.​org/​10.​1007/​bf022​94555
Hulin, L. H., Drasgow, Y., & Parsons, C. K. (1983). Item response theory: Application to psychological measurement. Homewood, IL: 

Dow Jones-Irvin.
Klein-Braley, C. (1985). A cloze-up on the C-test: a study in the construct validation of authentic tests. Language Testing, 2(1), 

76–104. https://​doi.​org/​10.​1177/​02655​32285​00200​108
Ligtvoet, R., van der Ark, L. A., te Marvelde, J. M., & Sijtsma, K. (2010). Investigating an invariant item ordering for polytomously 

scored items. Educational and Psychological Measurement, 70, 578–595. https://​doi.​org/​10.​1177/​00131​64409​355697
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. https://​doi.​org/​10.​1007/​BF022​

96272
Meijer, R. R., Sijtsma, K., & Smid, N. G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to 

IRT. Applied Psychological Measurement, 14(3), 283–298. https://​doi.​org/​10.​1177/​01466​21690​01400​306
Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 13 103). New York, NY: American Council 

on Education and Macmillan.
Mokken, R. J. (1971). A theory and procedure of scale analysis. De Gruyter. https://​doi.​org/​10.​1515/​97831​10813​203
Molenaar, W., & Sijtsma, K. (2000). MSP5 for Windows user’s manual. Groningen: Iec ProGAMMA.
Motallebzadeh, Z. (2023). A comparison of different methods for investigating the reliability of C-tests. Educational Methods & 

Practice, 1, 1.
Myszkowski, N. (2020). A Mokken scale analysis of the last series of the standard progressive matrices (SPM-LS). Journal of Intel-

ligence, 8(2), 22. https://​doi.​org/​10.​3390/​jinte​llige​nce80​20022
Nadri, M., Baghaei, P., & Zohoorian, Z. (2019). The contribution of cognitive abilities and general language proficiency to 

explaining listening comprehension in English as a foreign language. Cogent Education, 6(1), 156710. https://​doi.​org/​10.​
1080/​23311​86X.​2019.​15670​10

Norris, J. M. (2018). Developing C-tests for estimating proficiency in foreign language research. Frankfurt am Main: Peter Lang.
Raatz, U. (1984). The factorial validity of C-tests. In T. Culhane, C. Klein-Braley, & D. K. Stevenson (Eds.), Practice and problems in 

language testing 7. Proceedings of the seventh international language testing symposium of the IUS, Colchester, October 1983 
(pp. 124–139). Colchester: University of Essex, Department of Language and Linguistics.

Raatz, U. & Klein-Braley, C. (1982). The C-test – A modification of the cloze procedure. In T. Culhane, C. Klein-Braley & D. K. 
Stevenson (Eds.), Practice and problems in language testing IV. Proceedings of the Fourth International Language Testing 
Symposium of the Interuniversitäre Sprachtestgruppe (pp. 113–138). Colchester: University of Essex, Dept. of Language and 
Linguistics.

Raatz, U., & Klein-Braley, C. (2002). Introduction to language testing and to C-tests. In J. A. Coleman, R. Grotjahn, & U. Raatz 
(Eds.), University language testing and the C-test (pp. 75–91). AKS-Verlag.

Rajlic, G. (2020). Visualizing items and measures: An overview and demonstration of the Kernel smoothing item response 
theory technique. The Quantitative Methods for Psychology, 16(4), 363–375. https://​doi.​org/​10.​20982/​tqmp.​16.4.​p363

Ramsay, J. O. (1991). Kernel smoothing approaches to non-parametric item characteristic curve estimation. Psychometrika, 56, 
611–630.

Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educa-
tional Research, 1960. (Expanded edition, Chicago: The university of Chicago Press, 1980).

Rasoli, M. K. (2021). Validation of C-test among Afghan students of English as a foreign language. International Journal of 
Language Testing, 11(2), 109–121.

Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models. Psychometrika, 64, 295–316. https://​doi.​org/​10.​1007/​
BF022​94297

Sigott, G. (2004). Towards identifying the C-Test construct. Peter Lang.
Sijtsma, K. (1984). Useful nonparametric scaling: A reply to Jansen. Psychologische Beiträge, 26, 423–437.
Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied 

Psychological Measurement, 22, 3–31. https://​doi.​org/​10.​1177/​01466​21698​02210​01

https://doi.org/10.1037/0033-295X.111.4.1061
https://doi.org/10.1093/frebul/15.50.11
https://doi.org/10.1093/frebul/15.50.11
https://doi.org/10.7275/pare.1261
https://doi.org/10.1177/0734282919889262
http://www.c-test.de
https://www.ruhr-uni-bochum.de/sprachetesten/index.html.de
http://www.c-test.de
https://doi.org/10.1007/bf02294555
https://doi.org/10.1177/026553228500200108
https://doi.org/10.1177/0013164409355697
https://doi.org/10.1007/BF02296272
https://doi.org/10.1007/BF02296272
https://doi.org/10.1177/014662169001400306
https://doi.org/10.1515/9783110813203
https://doi.org/10.3390/jintelligence8020022
https://doi.org/10.1080/2331186X.2019.1567010
https://doi.org/10.1080/2331186X.2019.1567010
https://doi.org/10.20982/tqmp.16.4.p363
https://doi.org/10.1007/BF02294297
https://doi.org/10.1007/BF02294297
https://doi.org/10.1177/01466216980221001


Page 15 of 15Shoahosseini et al. Language Testing in Asia           (2024) 14:10 	

Sijtsma, K., Debets, P., & Molenaar, I. W. (1990). Mokken scale analysis for polychotomous items: theory, a computer program 
and an empirical application. Quality and Quantity, 24, 173–188. https://​doi.​org/​10.​1007/​BF002​09550

Sijtsma, K., & Junker, B. W. (1996). A survey of theory and methods of invariant item ordering. British Journal of Mathematical 
and Statistical Psychology, 49, 79–105. https://​doi.​org/​10.​1111/j.​2044-​8317.​1996.​tb010​76.x

Sijtsma, K., Meijer, R. R., & van der Ark, L. A. (2011). Mokken scale analysis as time goes by: an update for scaling practitioners. 
Personality and Individual Differences, 50, 31–37. https://​doi.​org/​10.​1016/j.​paid.​2010.​08.​016

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Sage. https://​doi.​org/​10.​4135/​97814​
12984​676

Spolsky, B. (1969, September 8–12). Reduced redundancy as a language testing tool [Conference presentation]. Second Interna-
tional Congress of Applied Linguistics, Cambridge, England. https://​eric.​ed.​gov/?​id=​ED031​702.

Spolsky, B. (1971). Reduced redundancy as a language testing tool. In G. E. Perren & J. L. M. Trim (Eds.), Applications of linguistics 
(pp. 383–390). Cambridge University Press.

Spolsky, B., Bengt, S. M., Sato, E. W., & Aterburn, C. (1968). Preliminary studies in the development of techniques for testing 
overall second language proficiency. Language Learning, 18(3), 79–101. https://​doi.​org/​10.​1111/j.​1467-​1770.​1968.​tb002​
24.x

Straat, J. H., van der Ark, L. A., & Sijtsma, K. (2013). Comparing optimization algorithms for item selection in Mokken scale 
analysis. Journal of Classification, 30, 75–99. https://​doi.​org/​10.​1007/​s00357-​013-​9122-y

Stemmer, B. (1991). What’s on a C-test taker’s mind: Mental processes in C-test taking. Bochum: Brockmeyer.
Stemmer, B. (1992). An alternative approach to C-test validation. In R. Grotjahn (Ed.), Der C-Test: Theoretische grundlagen und 

praktische anwendungen (Vol. 1, pp. 97–144). Bochum: Brockmeyer.
Tabatabaee-Yazdi, M., Motallebzadeh, K., & Baghaei, P. (2021). A Mokken scale analysis of an English reading comprehension 

test. International Journal of Language Testing, 11(1), 132–143.
vanderArk, L. A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48, 1–27. https://​

doi.​org/​10.​18637/​jss.​v048.​i05
Winsberg, S., Thissen, D., & Wainer, H. (1984). Fitting item characteristic curves with spline functions. ETS Research Report 

Series, 1984(2), i–14. https://​doi.​org/​10.​1002/j.​2330-​8516.​1984.​tb000​80.x

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/BF00209550
https://doi.org/10.1111/j.2044-8317.1996.tb01076.x
https://doi.org/10.1016/j.paid.2010.08.016
https://doi.org/10.4135/9781412984676
https://doi.org/10.4135/9781412984676
https://eric.ed.gov/?id=ED031702
https://doi.org/10.1111/j.1467-1770.1968.tb00224.x
https://doi.org/10.1111/j.1467-1770.1968.tb00224.x
https://doi.org/10.1007/s00357-013-9122-y
https://doi.org/10.18637/jss.v048.i05
https://doi.org/10.18637/jss.v048.i05
https://doi.org/10.1002/j.2330-8516.1984.tb00080.x

	C-Test construct validity: Evidence from nonparametric item response theory
	Abstract 
	Introduction
	Mokken scale analysis
	Mokken models
	Scalability coefficients
	MSA for polytomous items
	Assessing unidimensionality

	The present study
	Methodology
	Participants
	Instrument
	Procedure

	Results
	Dimensionality and reliability
	Scalability coefficients
	Invariant item ordering

	Discussion
	Limitations and future directions

	Conclusion
	Acknowledgements
	References


