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Abstract

The current study compared the model fit indices, skill mastery probabilities, and
classification accuracy of six Diagnostic Classification Models (DCMs): a general model
(G-DINA) against five specific models (LLM, RRUM, ACDM, DINA, and DINO). To do so,
the response data to the grammar and vocabulary sections of a General English
Achievement Test, designed specifically for cognitive diagnostic purposes from
scratch, was analyzed. The results of the test-level-model fit values obtained strong
evidence in supporting the G-DINA and LLM models possessing the best model fit.
In addition, the ACDM and RRUM were almost very identical to that of the G-DINA.
The value indices of the DINO and DINA models were very close to each other but
larger than those of the G-DINA and LLM. The model fit was also investigated at the
item level, and the results revealed that model selection should be performed at the
item level rather than the test level, and most of the specific models might perform
well for the test. The findings of this study suggested that the relationships among
the attributes of grammar and vocabulary are not ‘either-or’ compensatory or non-
compensatory but a combination of both.

Keywords: Attribute, General vs. specific diagnostic classification models, Model fit,
Q-matrix, True diagnostic classification models

Introduction Diagnostic Classification Models (DCMs) are considered as paramount

modeling alternatives for dealing with response data in the presence of multiple postu-

lated latent skills, which can cause multivariate classifications of respondents (Rupp &

Templin, 2008). These models have received much attention in the field of second lan-

guage assessment in the last decade (Kim, 2015), and this interest is linked with in-

creasing demands of discovering the learners’ problems and finding a solution for

them (Lee, 2015).

The main goals of DCMs are identifying strengths and weaknesses of individual

learners to provide detailed feedback about their current knowledge and skills in order

to take appropriate actions to remedy their weaknesses in various aspects of second
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language ability (Lee & Sawaki, 2009a), and also classifying learners into similar skill

mastery groups (Hartz SM: A Bayesian framework for the unified model for assessing

cognitive abilities: blending theory with practicality, unpublished).

Different models with their statistical packages have been developed and applied so

far. The Rule-space Model (RSM; Tatsuoka, 1983), Compensatory Reparametrized Uni-

fied Model (C-RUM, DiBello et al., 1995; Hartz SM: A Bayesian framework for the uni-

fied model for assessing cognitive abilities: blending theory with practicality,

unpublished), Deterministic Input, Noisy “And” Gate Model (DINA; Junker & Sijtsma,

2001), Non-Compensatory Reparametrized Unified Model (NC-RUM; Hartz SM: A

Bayesian framework for the unified model for assessing cognitive abilities: blending the-

ory with practicality, unpublished), Deterministic Input, Noisy “Or” Gate Model

(DINO; Templin & Henson, 2006), Attribute Hierarchy Method (AHM; Leighton et al.,

2004), General Diagnostic Model (GDM; von Davier, 2005), Generalized DINA Model

(G-DINA; de la Torre, 2011), Additive CDM (ACDM, de la Torre, 2011), and Hierarch-

ical Diagnostic Classification Model (HDCM; Templin & Bradshaw, 2013) can be enu-

merated as some.

These models are differentiated by reflecting compensatory or non-compensatory re-

lationships between postulated attributes of an item (Kunina-Habenicht et al., 2012). In

a compensatory model, the mastery of one attribute can compensate for the lack of

other attributes measured by the same item (de la Torre, 2011). On the contrary, when

a model is non-compensatory, the mastery of all the attributes is required to answer an

item correctly (de la Torre, 2011). The aforementioned relationships among the attri-

butes of an item can have ramifications for model selection in DCMs. Since choosing

the right model will make a difference in the classification of test-takers, it should be

performed cautiously (Lee & Sawaki, 2009b).

There are also two directions in applying DCMs: (1) to use DCMs to develop true

diagnostic tests from the onset and (2) to extract fine-grained diagnostic information

from tests already developed for non-diagnostic purposes, a practice referred to as

retrofitting (Lee & Sawaki, 2009b). Due to the fact that currently, explicit cognitive the-

ories which underlie the design and development of educational assessments are miss-

ing, it may be a long time before truly diagnostic assessments can be developed (Liu

et al., 2018). Therefore, except for a few attempts (e.g., Ketabi, S: Cognitive diagnostic

analysis of reading comprehension: a case of undergraduate students’ mastery over at-

tributes across different fields of study, unpublished; Paulsen & Valdivia, 2021; Ranj-

baran & Alavi, 2017) in which DCMs have been used to develop true diagnostic tests,

most applications of DCMs (e.g., Aryadoust, 2018; Effatpanah, 2019; Jang, 2009; Li

et al., 2015; Ravand and Robitzsch, 2018; Rupp & van Rijn, 2018; Yi, 2017) have taken

the second line of action.

Another point conspicuously noticeable in the applications of DCMs in the field of

language assessment is that they have mostly been applied to the reading comprehen-

sion tests (e.g., Hemati & Baghaei, 2020; Jang, 2009; Li, H: Evaluating language group

differences in the subskills of reading using a cognitive diagnostic modeling and differ-

ential skill functioning approach, unpublished; Li et al., 2015; Ravand, 2016; Ravand

et al., 2012; Ravand & Robitzsch, 2015, 2018), to a much lesser degree to listening com-

prehension (e.g., Aryadoust, 2018; Harding et al., 2015), sporadically to writing (e.g.,

Kim, 2011; Xie, 2016), much less sporadically to components of language such as
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grammar (e.g., Lee & Sawaki, 2009a; Yi, 2017), and to the best knowledge of the au-

thors, never to vocabulary.

Review of the literature
In the implications of DCMs, selecting a model among a large number of models is a

difficult decision (Jiao, 2009). In most DCM studies conducted so far, one single DCM,

indiscriminately, has been imposed on all items of the tests. There is a dearth of studies

searching for the best DCM for different contexts. In addition, in view of the ap-

proaches applied to DCMs, the data extracted from the tests in these studies are either

from an existing non-diagnostic test used for diagnostic purposes or a test developed

from the beginning based on DCM guidelines for diagnostic determination. As a result,

the studies relying on the selected approach are either retrofitting or true DCMs.

In a multi-DCM study, Lee and Sawaki (2009b) investigated the listening and reading

sections of iBT TOEFL deploying one general model (GDM) and two non-

compensatory constrained models (RUM, LCA). Although the findings revealed that all

three models were comparable with regard to accurate test-takers’ mastery classifica-

tion and skill mastery probability, as well as a moderate across-form consistency, there

was no outcome with common fit statistics due to utilizing three different software to

run the models as it was only possible to use each software to estimate only one model.

In addition, as no general model was applied against specific ones, the generalizability

of the results to contexts in which both compensatory and non-compensatory interac-

tions are allowed went under the question.

In another study, Yi (Yi Y: Implementing a cognitive diagnostic assessment in an in-

stitutional test: a new networking model in language testing and experiment with a

new psychometric model and task type, unpublished) compared one general model

(LCDM) and four reduced models (ACDM, DINA, DINO, NDINO) in regard to model

fit and skill mastery profiles. She found that the ACDM functioned similarly to the

LCDM, but due to the MPLUS software limitations at the time of her study, it was im-

possible to come up with the results of fit indices for RRUM, a non-compensatory ver-

sion of ACDM.

The software limitations of the two aforementioned model comparison studies in re-

lation to showing different fit indices led to vague results about the performance of the

models. To come up with software problems, Li et al. (2015), in a study, applied the R-

package CDM, version 3.2-6 (Robitzsch et al., 2013). The CDM package in R is the

most comprehensive software to run CDMs (Ravand & Robitzsch, 2018). Moreover, it

makes the estimation of the fit indices of the other models possible (Lei & Li, 2014).

To run the study, a general model (G-DINA), two reduced compensatory models

(ACDM, DINO), and also two constrained non-compensatory models (RRUM, DINA)

were applied to the Michigan English Language Assessment Battery reading test. The

results of this study revealed that the ACDM possessed the closest affinity to the G-

DINA model in view of the model fit and skill classification profiles; in contrast, the

RRUM, DINA, and DINO models showed dissimilar results regarding both models fit

statistics and skill mastery properties with the ACDM and G-DINA models.

All the above-cited studies applied different DCMs to EFL reading context with a

focus on model fit and skill mastery profiles, but Yi (2017), in a new line of action, con-

ducted more extensive research on multi-DCM by providing both basic statistics and
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also evidence for validity and reliability. He compared the LCDM as a general model

with the DINA, DINO, NDINO, and RRUM and reported that the RRUM model

showed a better fit in a grammar test compared to the other models.

Still, in another study, Aryadoust (2018) investigated the fit indices of multi-DCM

(G-DINA, DINA, HO-DINA, and RRUM) on the listening test of the Singapore-

Cambridge General Certificate of Education exam using the CDM package in R and

concluded that the RRUM model expressed the highest absolute fit indices in compari-

son with the other models. This result was in agreement with Yi (2017), who found the

outperformance of RRUM compared with other models but incongruent with Chen

and Chen (2016) and Ravand (2016), who reached the conclusions that the G-DINA

model has the best-fit indices for a reading test. Since Lei and Li (2016) assigned a sub-

stantial role to the sample size in the performance of the fit indices and Galeshi and

Skaggs (2014) emphasized the key role of the number of attributes measured by each

item and the direct effects of the number of items and sample size on parameter recov-

ery as well of classification accuracy, this controversy in Yi’s (2017) findings might be

as a result of existing many items with only one attribute in the test and the results

reached by Aryadoust (2018) can be justified due to adopting a very small sample size

(N= 205).

A recent study on multi-DCM was carried out by Ravand and Robitzsch (2018). The

merits of this study over the other ones were applying a large sample size (N= 21, 42)

to a high-stakes reading comprehension test comparing a General DCM (the G-DIND)

with a reduced compensatory model (DINO), a constrained non-compensatory Model

(DINA), and three additive models (ACDM, C-RUM, and NC-RRUM) in relation to

both test-level and item-level fit indices, skill mastery profiles, and classification accur-

acy. To conduct the study, the CDM package in R was used. The results depicted that

the G-DINA showed the best fit properties, and the C-RUM, NC-RUM, and ACDM

performed almost the same as that of the G-DINA. Following the discrepancies in the

results of multi-DCM studies in terms of the relationships among the attributes in a

reading test, it was suggested that the DCMs should be run at the item level rather than

the test level. As a consequence, each item can choose the model that best fits.

The studies on true multi-DCM are very few. In a very recent study, Ketabi (Ketabi,

S: Cognitive diagnostic analysis of reading comprehension: a case of undergraduate stu-

dents’ mastery over attributes across different fields of study, unpublished) developed a

true DCM reading comprehension test based on Ravand and Baghaei’s (2019) frame-

work comparing two general models, i.e., the G-DINA and LCDM, against four con-

strained models, i.e., the ACDM, the RRUM, the DINA, and the DINO in terms of

model fit, proportions of different attribute probabilities, classification accuracy, and

consistency among two groups of undergraduate students of humanities and engineer-

ing. The results showed that the ACDM would be the best model in terms of the model

fit. In contrast, DINO model appeared to have the worst model fit. Furthermore, the

students of humanities and engineering showed different attribute mastery. Moreover,

this study did not estimate model fit indices at the item level to check the dependency

among the items in order to remove the misfitting items and improve the model fit

accordingly.

As mentioned above, there are a few studies on the DCM of best choice for reading

(e.g., Jang, 2009; Li et al., 2015; Ravand & Robitzsch, 2018), less than a few on listening
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(e.g., Aryadoust, 2018), and grammar (Yi, 2017) but no multi-DCM study on vocab yet.

Another point worth noting is that, up to date, except for a few attempts (e.g., Paulsen

& Valdivia, 2021; Ranjbaran & Alavi, 2017) in which DCMs have been deployed to de-

velop true diagnostic tests, all the other existing multi-DCM studies have taken the

retrofitting line of action (i.e., to use the existing non-diagnostic tests for diagnostic

purposes). Hence, multi-DCM studies which apply DCMs to test development in order

to provide diagnostic feedback are what is mostly required (Ravand & Robitzsch, 2018).

To top that off, the preeminent significance of the present study is applying a General

English Achievement Test developed from the start based on DCMs. Furthermore, it is

the first multi-DCM study on vocabulary. In addition, the present study investigated

the performance of model fit indices similarly at the test and item levels, skill mastery

profiles, and classification accuracy. Finally, the G-DINA package in R, version 3.6.3

(Ma & de la Torre, 2020) was performed to compare a general DCM model (G-DINA)

against five specific models (LLM, RRUM, ACDM, DINA, and DINO) to decide on the

model of the best choice for a General English Achievement Test. Although the CDM

package is the most comprehensive software in R and can provide information on both

relative and absolute fit indices to compare multi-models (Ravand & Robitzsch, 2015),

the G-DINA package was used in this study since this software can handle different

models in a unified manner which is not the case with the CDM package (Rupp & van

Rijn, 2018). To add more, the G-DINA package is user-friendlier as it presents the re-

sults in both numerical and graphical formats, establishes easier interaction with the

users, and is more time-efficient (Rupp & van Rijn, 2018).

Diagnostic Classification Models (DCMs) applied to this study
General DCMs (GDCMs) can assume different types of relationships in a test: compen-

satory, non-compensatory, additive, or hierarchical, and each item can decide on its

own model. It is also plausible to use a GDCM due to its flexibility in allowing different

kinds of interactions among the attributes when these interactions are blurred (Li et al.,

2015). Examples of these models entail General Diagnostic Model (GDM; von Davier,

2005), Log-Linear CDM (LCDM; Henson et al., 2009), Generalized Deterministic

Inputs, Noisy “And” Gate (GDINA; de la Torre, 2011), and Hierarchical Diagnostic

Classification Model (HDCM; Templin & Bradshaw, 2013). The G-DINA model, which

was applied to this study, in its saturated form, is not differentiated from other general

models by relying on alternative link functions (de la Torre, 2011). It parametrizes both

the main effects and the interaction effects of the attributes (de la Torre & Minchen,

2014), and if appropriate limitations are imposed, several specific DCMs can be derived

from this general model (de la Torre, 2011).

According to the G-DINA model an item with two attributes α1and α2 will possess

one intercept parameter δj0 (the probability of answering an item correctly without

mastering any of the required attributes), two main effects δ j1αþδ j2α2 , and one

interaction effect δ j12α1α2 . In this case, the probability that test-taker i, answers item j

correctly is expressed as follows (de la Torre, 2011):

ρ x j ¼ 1jα1 α2
� � ¼ δ j0þδ j1α1þδ j2α2þδ j12α1α2
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Specific (also called constrained or reduced) DCMs, contrary to the GDCMs, allow

only one type of predetermined relationship in a test: compensatory, non-

compensatory, additive, or hierarchical. Despite the fact that general CDMs are better

at model-data fit, specific DCMs have less complicated interpretations and offer classifi-

cations with more accuracy (Ma et al., 2016).

For the purpose of this study, among different specific DCMs, a compensatory model:

Deterministic Input Noisy “And” Gate Model (DINA; Junker & Sijtsma, 2001), a non-

compensatory model: Deterministic Input noisy “Or” Gate Model (DINO; Templin &

Henson, 2006) and also three additive models: Additive CDM (ACDM; de la Torre,

2011), Linear Logistic Model (LLM; Maris, 1999), and Non-Compensatory Reparame-

trized Unified Model (NC-RUM; Hartz SM: A Bayesian framework for the unified

model for assessing cognitive abilities: blending theory with practicality, unpublished)

were compared.

Considering the specific models, the DINA model can be derived from the G-DINA

if the main effects and the interaction effects are set to zero (de la Torre, 2009, 2011),

and it parametrizes slipping (sj) and guessing (gj) probabilities as well. Slipping prob-

ability is answering an item incorrectly despite having mastered all the attributes of that

item, whereas guessing probability is responding to an item correctly even though the

test-taker lacks the required attributes (Haertel, 1989). Thus, in this model, in case of a

two-attribute item, the probability that test-taker i gets item j correct is as follows:

ρ x j ¼ 1jα1 α2
� � ¼ g j

1−α1α2 1−s j
� �α1α2

The DINO model, similar to its compensatory version: the DINA has the guessing

(gj) and lack of slipping (1 − sj) probabilities for item j. As the assumptions of the DINO

model denotes, the probability of answering an item correctly is not differentiated if the

test-taker has mastered all or even one of the required attributes for an item, and this

probability is depicted as follows:

ρ x j ¼ 1jα1 α2
� � ¼ g j

1−α1ð Þ 1−α1ð Þ 1−s j
� �1− 1−α1ð Þ 1−α1ð Þ

The ACDM, RRUM, and LLM as additive models are derived from the G-IDINA by

equating all the interaction effects to zero. In additive DCMs, each attribute has an

additive role in increasing the probability of reaching a correct response, i.e., even the

lack of one attribute can be compensated by other attributes (de la Torre, 2011). An-

other point worth noting is that by turning the identity link function in G-DINA to a

log link function and a logit link function, the RRUM, and the LLM models can be run,

respectively. Furthermore, the LLM model has a constant additive effect on the logit of

the probability of a correct response (de la Torre, 2011).

To run the study, the research questions were posed as follows:

1) How do the G-DINA, DINA, DINO, ACDM, LLM, and RRUM models fit the

grammar and vocabulary items of a General English Achievement Test at the test

level?

2) How do the G-DINA, DINA, DINO, ACDM, LLM, and RRUM models fit the

grammar and vocabulary items of a General English Achievement Test at the item

level?
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Method
Data sources

In the present study, a General English Achievement Test based on a cognitive frame-

work was analyzed. The test was administered to 1773 male and female bachelor’s uni-

versity students taking part in a three-credit General English Language Course at

Islamic Azad University, Shahr-e-Qdos Branch in 2019. They were studying different

majors, and their age range was mostly 18 to 35. The test included two sections: gram-

mar and vocabulary. Each section consisted of 30 four-option multiple-choice items.

The allocated time to accomplish the test was 75 min.

The Achievement Test and the Q-matrix were adopted from Shafipoor (Shafipoor,

M: A comparative study of different cognitive diagnostic models for developing a Gen-

eral English Achievement Test, unpublished), a recent study on true DCMs. Generally

speaking, the framework for developing a cognitive diagnostic test mainly entails two

approaches: Embreton’s Cognitive Diagnostic System (CDS) (Embretson and Gorin,

2001) and Mislevy’s Evidence-centered Design (ECD) (Mislevy, 1996). Although both

approaches centralize the role of cognition and evidence gathering in test development,

there are some differences in their procedures. There are some advantages of CDS ap-

proach to ECD approach, such as predicting item parameters for newly developing

items, the possibility of learning about construct validity at both the test and item levels

and gaining cognitive information, which enhances score interpretation (Embretson

and Gorin, 2001).

Due to the advantages mentioned above, in Shafipoor’s (Shafipoor M: A comparative

study of different cognitive diagnostic models for developing a General English Achieve-

ment Test, unpublished) study, Embreston’s CDS, along with the content analysis, stu-

dents’ think-aloud protocol, as well as experts’ judgment were deployed to identify the

attributes for test development purposes and decision making on the Q-matrix. As a mat-

ter of fact, in DCMs, the Q-matrix is a tentative vector and specifies the relationship be-

tween test items and the target attributes required by each item. Since the Q-matrix

construction, to a large extend, is fulfilled by the experts in the field and is a subjective

process, any misspecifications should be checked; otherwise, important practical implica-

tions may arise (de la Torre & Chiu, 2016).

In Shafipoor’s (Shafipoor M: A comparative study of different cognitive diagnostic

models for developing a General English Achievement Test, unpublished) study (See

Appendix A), the Q-matrix consisted of four common attributes in both grammar and

vocabulary sections of the test under the title of lexical skill, morphosyntactic skill, co-

hesive skill, and contextual meaning. The word “skill” encompassed both form and

meaning. Technically speaking, the abovementioned attributes are defined by Purpura

and E. (2004) as follows: lexical form refers to the ability to comprehend and produce

the words which encode the grammar rather than meaning (e.g., syntactic features, co-

occurrence restrictions); similarly, lexical meaning refers to the use of words and their

interpretation through their literal meanings (e.g., collocations, false cognates, formulaic

expressions). In addition, morphosyntactic form specifies understanding syntactic forms

in a language (e.g., word order, syntactic structures); by the same token, morphosyntac-

tic meaning ascribes meanings to syntax, inflections, or derivations (e.g., subjunctive

mood, time/duration). Moreover, cohesive form refers to features of language which
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make the interpretation of the cohesion at both sentence and discourse levels possible

(e.g., referential forms, logical connectors/conclusions, adjacency pairs); likewise, cohe-

sive meaning refers to the meanings conveyed through cohesive devices which connect

the cohesive forms with their referential meanings within a context (e.g., personal refer-

ents, demonstratives, comparatives). Finally, contextual meaning assigns meaning to a

message under the influence of interpersonal, situational, or social factors.

Data analysis

The G-DINA package, version 3.6.3 (Ma & de la Torre, 2020) in R software (R core

team, 2013), was used to analyze the data comparing one general model (the G-DINIA)

against five constrained models (DINA, DINO, ACDM, RRUM, and LLM).

As a result of identifying four attributes (K=4) involved in grammar and vocabulary

items, sixteen latent classes (2k) were recognized, and the proportions of the test-takers,

classified in each of the attributes by different DCMs were estimated. After that, the

data was analyzed in relation to model fit statistics at both the test and item levels.

Overall, at the test and item levels, fit indices are estimated at two levels: absolute fit in-

dices, which compare the fit of the model to the data and relative fit indices, which com-

pare the fit of a model with other rival models. Contrary to some researchers who are for

absolute fit indices in multi-DCM studies (e.g., Li et al., 2015; Ravand, 2016; Yi, 2017),

some others are against them (e.g., Chen et al., 2013; Lei & Li, 2016). The data analyses at

the present study were conducted at both the test and item levels. First, the G-DINA

model was compared against the fit of constrained models. Subsequently, model selection

was performed at the item level to let each item choose the most fitting model.

Test-level model comparison

In the first phase of the data analysis, which was carried out at the test-level, three rela-

tive fit indices (AIC, BIC, -2LL), six absolute fit indices (M2, RMSEA2, SRMSR, propor-

tion correct, log-odds ratio, transformed correlation), test-takers’ skill mastery

probabilities, and classification accuracy were estimated.

Akaike Information Criterion (AIC; Akaike, 1974), Bayesian Information Criterion

(BIC; Schwarz, 1978), and −2 log-likelihood (-2LL) with small values count for a better

data-model fit index. When there is a lack of Q-matrix misspecification, and a saturated

model is applied, AIC depicts a higher accuracy compared to BIC; however, if larger

sample size with less complicated models is used, BIC shows a better performance (Lei

and Li, 2016).

M2, RMSEA2 (the root mean square error of approximation fit index for M2), SRMS

R (the standardized root mean squared residual), proportion correct (p), log-odds ratio

(l), and transformed correlation (r) are the outputs of the absolute model-data fit indi-

ces of the G-DINA package.

M2 is sensitive to local item dependency, misspecifications of the model, the Q-

matrix, and the distributions of latent dimensions (Henson et al., 2009). A significant p

value is the indication of the violation of the item independency and the misfit of the

model to the data (Hu et al., 2016). RMSEA2 “is a measure of discrepancy between the

observed covariance matrix and model-implied covariance matrix per degree of free-

dom” (Chen, 2007, p. 467). RMSEA2 ranges from 0 to 1 and values less than .06
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indicate good fit (Hooper et al., 2008). SRMSR is a degree of the mean of standardized

residuals between the predicted and the observed covariance matrices (Chen, 2007).

The acceptable SRMSR values range between 0 and .08 (Hu & Bentler, 1999).

Proportion correct is the residuals between the predicted and observed proportions

of test-takers’ correct replies to the items. Log-odds ratio is the residuals between the

predicted and observed logs-odds ratios of the item pairs. And transformed correlation

refers to the residuals between the predicted and observed Fisher-transformed correl-

ation of the item pairs. The smaller the values of all the abovementioned indices, the

better the model fit will be.

Finally, classification accuracy is viewed as significant indices for evaluating the valid-

ity of classification results in DCMs (Wang et al., 2015) and is defined as the extent to

which the test-takers’ “classification of latent classes based on the observed item

response patterns agrees with their true latent classes” (Cui et al., 2012, p. 23). Later,

Iaconangelo (Iaconangelo, C: Uses of classification error probabilities in the three-step

approach to estimating cognitive diagnosis models, unpublished) and Wang et al.

(2015) introduced a new index for classification accuracy applying both pattern and

attribute-level classification accuracy indices based on the G-DINA estimates for di-

chotomous data.

To evaluate the models in this study, classification accuracy at the test and attribute

levels were checked. The evaluation was based on the G-DINA estimates followed the

rules of Iaconangelo (Iaconangelo, C: Uses of classification error probabilities in the

three-step approach to estimating cognitive diagnosis models, unpublished) and Wang

et al. (2015).

Item-level model comparison

At item-level data analysis, the model fit was checked at the level of the item. There

are few studies on item-level model fit (e.g., de la Torre & Lee, 2013; Henson et al.,

2009; Ma et al., 2016; Sorrel et al., 2017), suggested different approaches (e.g., applying

visual inspection, using the Wald test) to compare the model fit indices at the item

level.

In the present study, the fit of the models at the item level was conducted following

two approaches: in the first approach, the G-DINA model was run, and each item had

the chance to select its best-fitting model. In the second line of action, the constrained

models, suggested by the Wald test, were fitted to each single item following the rule of

Ma et al. (2016), and the combinations of DCMs were compared against the G-DINA

model.

Results
Q-matrix validation

To validate the initial Q-matrix, first, the suggested Q-matrix provided by the software

was inspected by the experts. Since the suggestions were not in agreement with the ex-

perts’ opinions, they were not considered.

Consequently, item-fit statistics, the Heatmap plot, the mesa plot, and the Item plots

for each item were checked. The results showed there were some misfitting items. In

order to identify and remove these items, dependencies between items were inspected
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through the values offered by transformed correlations and log odds ratio and, as a re-

sult, 22 items, i.e., 39, 28, 5, 38, 41, 25, 48, 32, 37, 8, 9, 3, 2, 4, 33, 35, 36, 43, 46, 18, 22,

and 29, were removed which resulted in improved model fit. Tables 2 and 3 and Figs. 1

and 2 represent the findings.

As Table 1 shows, there was an improvement in both relative and absolute fit indices

in the final Q-matrix compared to the initial one. For final Q-matrix, see appendix B.

Table 2 depicts that the adjusted p values for both transformed correlation and log

odds ratio exceeded 0.05 and were insignificant.

Furthermore, the shading areas in Heatmap plot show the Bonferroni adjusted p

values for all paired items. Red squares represent insufficient fit with p values below

0.05; in contrast, gray squares with p value above 0.05 indicate good fit indices. As illus-

trated in Figs. 1 and 2, by removing the misfitting items, the shading areas changed to

gray.

Model comparison

Model comparison at the test level

Table 3 illustrates the relative and absolute fit values of the abovementioned models. In

terms of the number of parameters, the G-DINA model with 175 parameters was the

most complex one, while the DINA and DINO models possessing 91 parameters were

the most parsimonious ones.

Fig. 2 Heatmap plot for the final Q-matrix

Fig. 1 Heatmap plot for the initial Q-matrix
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Considering the relative fit indices, the G-DINA model possessed the lowest AIC

value, followed by LLM, ACDM, and RRUM. In addition, the LLM, RRUM, and ACDM

had a very close affinity to the G-DINA. The DINA model was very similar to DINO in

that it had the largest AIC values. In terms of BIC, the LLM had the lowest indices,

followed by ACDM, RRUM, G-DINA, DINA, and DINO. The G-DINA did not show a

low value for BIC. This can be probably justified by the sensitivity of BIC to highly pa-

rameterized models (Li et al., 2015).

In relation to the absolute fit indices, the ACDM, DINA, and DINO models yielded

the largest M2 and SRMSR values revealing the worst fit compared to other models; in

contrast, the G-DINA indicated the best fit, followed by LLM and RRUM. The accept-

able SRMSR values range between 0 and 0.08 (Hu & Bentler, 1999). As to RMSEA2, al-

though all the models obtained values <.05 and their confidence intervals in the upper

bounds were <.05, the indices of ACDM and RRUM followed by LLM were identical to

that of G-DINA and DINA. In comparison, DINO had the worst fit. RMSEA2 ranges

from 0 to 1 and values less than 0.06 indicate good fit (Hooper et al., 2008). In terms of

-2LL, the G-DINA model obtained the smallest values. This was not far from the ex-

pectations since general models are highly parameterized, and they often show higher

likelihood range compared to constrained models (Chen et al., 2013).

Briefly, as the results of the model fit comparison indicate, the G-DINA and LLM

showed the smallest indices; then, they reached the status of the best-fitting models.

The ACDM and RRUM were almost the closest models to the G-DINA. In addition,

the value indices of the DINO and DINA models were very close to each other but lar-

ger than those of the G-DINA and LLM. Finally, the DINO appeared to have the worst

model fit.

Table 4 illustrates the absolute item-level fit indices for each model. The results re-

vealed that all models obtained good fit values to data. With respect to proportion cor-

rect values, the statistics in all the models were lower than the critical Z-score, i.e.,

4.17. Contrarily, the indices of transformed correlations and log-odds ratios, except for

the G-DINA model, were not satisfactory since their adjusted p values were lower than

.05. This could be the case as a result of item dependencies in constrained models.

Table 2 Item-level fit indices for initial and final Q-matrices

Mean[stats] Max[stats] Max[z.stats] p value Adj. p value

Initial
Q-matrix

Proportion
correct

00.01 0.0034 0.2907 0.7713 1

Transformed correlation 0.313 0.2197 9.2443 0.0000 0

Log odds ratio 0.1410 0.9237 8.6813 0.0000 0

Final
Q-matrix

Proportion correct 0.0012 0.0041 0.3764 0.7066 1

Transformed correlation 0.0258 0. 0928 3.9027 0.0001 0.669

Log odds ratio 0.1142 0.4625 3.7646 0.0002 0.1173

Table 1 Relative and absolute fit indices for initial and final Q-matrices

Model #N par AIC BIC M2 RMSEA2 RMSEA2

CI 1
RMSEA2

CI 2
SRMSR -2log likelihood

Initial Q-matrix 267 120,336 121,799 3221 0.0245 0.0233 0.0257 .0399 119,802

Final Q-matrix 175 78,939 79,898 982 0.0204 0.0182 0.0225 0.0316 78,589

Note: #N par number of parameters, CI confidence interval
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Table 5 presents the observed pattern for all the models classified the test-takers into

classes of mastery (1) or non-mastery (0). The most prevalent latent classes were class

1 [0000] with non-mastery of all the attributes and class 16 [1111] with mastery of all

the attributes. With regard to the latent class indices, the LLM, ACDM, and RRUM

were very identical to that of the G-DINA, while the DINA and DINO were the

remotest.

In order to evaluate the agreement between the skill mastery probabilities of the G-

DINA and the constrained models, the root mean square of the proportion difference

(RMSPD) between the G-DINA model, and LLM, ACDM, RRUM, DINA, and DINO

was calculated, and the values were 0.027, 0.028, 0.032, 0.053, and 0.078, respectively.

As a result, the LLM followed by RRUM and ACDM had the closest affinity to that of

the G-DINA, and the DINA and DINO were the most distant ones. In the next step,

Cohen’s Kappa as a method of checking the similarities between skill classification pro-

files of the G-DINA model and those of constrained models was computed. According

Table 4 Absolute item-level fit indices

Model Mean[stats] Max[stats] Max[z.stats] p value Adj.
p value

G-DINA Proportion correct 0.0012 0.0041 0.3764 0.7066 1

Transformed correlation 0.0258 0. 0928 3.9027 0.0001 0.669

Log odds ratio 0.1142 0.4625 3.7646 0.0002 0.1173

LLM Proportion correct 0.0013 0.0032 0.2732 0.7847 1

Transformed correlation 0.0273 0.0983 4.1359 0.000 0.249

Log odds ratio 0.1210 0.5072 3.9982 0.001 0.449

ACDM Proportion correct 0.0018 0.0085 0.7535 0.4511 1

Transformed correlation 0.0283 0.1117 4.6980 0.0000 0.0018

Log odds ratio 0.1252 0.5093 4.5975 0.0000 0.0030

RRUM Proportion correct 0.0012 0.0051 0.4499 0.6528 1

Transformed correlation 0.0290 0.1169 4.9177 0.0000 0.0062

Log odds ratio 0.1275 0.5283 4.7776 0.0000 0.0012

DINA Proportion correct 0.0012 0.0030 0.2570 0.7972 1

Transformed correlation 0.0390 0.1485 6.2483 0.0000 0

Log odds ratio 0.1722 0.7906 5.6413 0.0000 0

DINO Proportion correct 0.0012 0.0035 0.3092 0.7571 1

Transformed correlation 0.00403 0.1603 6.7426 0.0000 0

Log odds ratio 0.1787 0.8604 6.2667 0.0000 0

Table 3 Model fit indices

Model #N par AIC BIC M2 RMSEA2 RMSEA2

CI 1
RMSEA2

CI 2
SRMSR -2log likelihood

G-DINA 175 78939 79898 982.48 0.0204 0.0182 0.0225 0.0316 78589.31

LLM 131 79124 79842 1150.78 0.0224 0.0224 0.0204 0.0334 78862.88

ACDM 131 79229 79948 1132.69 0.0220 0.0200 0.0240 0.0355 78967.78

RRUM 131 79272 79990 1141.35 0.0222 0.0202 0.0241 0.0358 79010.32

DINA 91 80037 80536 1373.11 0.0250 0.0232 0.0269 0.0471 79855.69

DINO 91 80123 80622 1377.35 0.0251 0.0233 0.0270 0.0479 79941.99

Note. #N par number of parameters
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to Cohen (1960), Cohen’s Kappa indices are interpreted as slight agreement (< 20),

fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect

(0.81–0.100).

Table 6 indicates that the G-DINA and the LLM models reached the highest

agreement, which ranged from

0.94 to 0.99 among different attributes. However, the DINO model had the least

agreement with the G-DINA, and in relation to contextual meaning, the agreement was

only 0.72 between these two models showing that 28% of the test takers were classified

differently for this attribute. Also, the ACDM revealed high agreement with the G-

DINA model followed by the RRUM, DINA, and DINO.

To compare the accuracy of the models, classification accuracy was calculated at test

and attribute levels based on the G-DINA estimates applying approaches of Iaconan-

gelo (Iaconangelo, C: Uses of classification error probabilities in the three-step ap-

proach to estimating cognitive diagnosis models, unpublished) and Wang et al. (2015).

Classification accuracy at the test level indicates the extent to which the test-takers

are accurately classified into their true latent classes. Indices above .80 are acceptable

rates for classification accuracy at the test level (Ravand and Robitzsch, 2018). As Table 7

indicates, the DINA, LLM, ACDM, and RRUM had identical accuracy indices to that of

the G-DINA at the test level, but the only acceptable value was that of the G-DINA.

Table 6 Agreement of skill classification of the G-DINA and the constrained models

Attribute G-DINA
vs.
LLM

G-DINA
vs.
ACDM

G-DINA
vs.
RRUM

G-DINA
vs.
DINA

G-DINA
vs.
DINO

Lexical skill 0.99 0.93 0.91 0.88 0.85

Morphosyntactic skill 0.98 0.89 0.87 0.75 0.75

Cohesive skill 0.96 0.93 0.91 0.80 0.87

Contextual meaning 0.94 0.90 0.89 0.88 0.72

Table 5 Proportion of skill mastery profiles

Mastery pattern G-DINA LLM ACDM RRUM DINA DINO

0000 0.2700 0.2735 0.24636 0.26149 0.02992 0.4308

1000 0.0452 0.0500 0.04220 0.06752 0.03596 0.0539

0100 0.0155 0.0108 0.00287 0.00024 0.14829 0.0559

0010 0.1816 0.2041 0.20982 0.23740 0.13372 0.0055

0001 0.1951 0.1957 0.18055 0.16228 0.02929 0.0023

1100 0.0150 0.0316 0.00491 0.00099 0.03381 0.0345

1010 0.0979 0.0182 0.08362 0.09133 0.05535 0.0017

1001 0.0311 0.0179 0.00103 0.00935 0.06429 0.0424

0110 0.0157 0.0293 0.05331 0.06635 0.06307 0.0002

0101 0.0113 0.0065 0.00415 0.00252 0.00237 0.0176

0011 0.0016 0.0079 0.01406 0.01321 0.00181 0.0021

1110 0.0048 0.0261 0.01365 0.01936 0.04306 0.0542

1101 0.2199 0.0904 0.00858 0.00176 0.00047 0.0870

1011 0.0398 0.0578 0.07714 0.06381 0.04750 0.0509

0111 0.0124 0.0089 0.00727 0.00111 0.01634 0.0373

1111 0.1356 0.1917 0.23454 0.24054 0.39323 0.1229
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Classification accuracy at the attribute level shows the degree to which test-takers’

are accurately classified into groups of maters or non-maters for each attribute.

Johnson and Sinharay (2018) interpreted the classification accuracy as follows: values

smaller than 20 represent lack of reliability, 0.25–0.50 poor reliability, 0.50–0.65 fair re-

liability, 0.65–0.80 good reliability, 0.80–0.90 very good reliability, and larger than 0.90

excellent reliability.

As Table 8 shows, in light of Johnson and Sinharay’s (2018) rule of thumb, the values

for the “lexical skill” showed excellent reliability in all the models. Furthermore, all the

models classified test-takers accurately as masters and non-masters of every single attri-

bute with the reliability values over 0.80, except for that of the DINA model with the

least accurate attribute, i.e., “Morphosyntactic skill.”

Model comparison at the item level

To check the fit of the models at the item level, two directions were applied. Following

the first approach, the G-DINA model was run, and each item had the chance to pick

its best-fitting model. Table 9 indicates the suggested models for items with multi attri-

butes. Among 38 multi-attribute items, 17 items (i.e., 7, 13, 14, 15, 17, 20, 24, 27, 30,

31, 44, 49, 51, 54, 55, 57, 59) selected the LLM, 9 items (e.g., 6, 10, 16, 19, 26, 40, 47,

53, 60) picked the RRUM, 8 items (i.e., 1, 11, 12, 45, 50, 52, 56, 58) chose the ACDM,

one item (i.e., 42) selected the DINA, one item (i.e., 21) took the DINO, and finally,

two items (i.e., 23, 34) picked the G-DINA.

Next, in the second line of action, the fit of a new model (i.e., the combinations of

DCMs applied to this study) was checked against that of the G-DINA model using the

likelihood ratio test. Due to the fact that the new model involved constrained form of

the G-DINA model, a smaller value of log-likelihood index and, consequently, better fit

was expected. Table 10 shows the lower fit indices of the new model concerning both

AIC and BIC values.

Discussion
The current study compared the model fit indices, skill mastery probabilities, and clas-

sification accuracy of a saturated model (G-DINA) against five constrained models

(LLM, RRUM, ACDM, DINA, and DINO) with the grammar and vocabulary sections

of a General Achievement English test designed specifically for cognitive diagnostic

purposes from scratch.

Table 8 Attribute level accuracy

Attributes G-DINA LLM ACDM RRUM DINA DINO

Lexical skill 0.922 0.921 0.918 0.940 0.916 0.913

Morphosyntactic skill 0.915 0.936 0.919 0.925 0.735 0.879

Cohesive skill 0.851 0.861 0.934 0.951 0.832 0.858

Contextual meaning 0.922 0.927 0.926 0.927 0.901 0.873

Table 7 Test level accuracy

Model G-DINA LLM ACDM RRUM DINA DINO

0.792 0.757 0.765 0.790 0.770 0.667
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The results of test-level-model fit values obtained strong evidence in supporting the

G-DINA and LLM models as showing the best model fit. The ACDM and RRUM were

almost very identical to that of the G-DINA. The value indices of the DINO and DINA

models were very close to each other but larger than those of the G-DINA and LLM.

Finally, the DINO appeared to have the worst model fit. The outperformance of the G-

DINA model in this study converges with Effatpanah (2019), Chen and Chen (2016),

Ravand (2016), and Ravand and Robitzsch (2018) but in disagreement with Aryadoust

(2018), Li et al. (2015), and Yi (Yi Y: Implementing a cognitive diagnostic assessment in

an institutional test: a new networking model in language testing and experiment with

a new psychometric model and task type, unpublished; 2017). There are some points

worth mentioning regarding the inconsistencies of the obtained results.

First, considering all the criteria in both relative and absolute fit indices at the test

level, the G-DINA model did not show a low statistic for BIC. This result was congru-

ent with Li et al. (2015) and can be probably due to the sensitivity of BIC to highly pa-

rameterized models.

Second, the scarce number of multi-DCM studies which compared the constrained

models against the G-DIDA, even with gaining very similar results with that of the G-

DINA, claimed the superiority of these models to the G-DINA due to using less num-

ber of parameters (e.g., Li et al., 2015; Yi Y: Implementing a cognitive diagnostic

Table 10 Likelihood ratio test for the combinations of DCMs with the G-DINA model

Model LL #N par AIC BIC x2 df P

G-DINA −39294 175 78589 78939 - - -

DCMs −39321 131 78643 78905 53.71 44 <0.001

Table 9 Model selection at the item level

Item Model P value Item Model P value

1 RRUM 0.448 31 LLM 0.994

6 RRUM 0.9162 34 G-DINA

7 LLM 0.214 40 RRUM 0.551

10 RRUM 0.737 42 DINA 0.695

11 ACDM 0.759 44 LLM 0.897

12 ACDM 0.433 45 ACDM 0.237

13 LLM 0.234 47 RRUM 0.367

14 LLM 0.909 49 LLM 0.982

15 LLM 0.109 50 ACDM 0.237

16 RRUM 0.215 51 LLM 0.378

17 LLM 0.979 52 ACDM 0.528

19 RRUM 0.458 53 RRUM 0.939

20 LLM 0.070 54 LLM 0.236

21 DINO 0.262 55 LLM 0.638

23 G-DINA 56 ACDM 0.501

24 LLM 0.823 57 LLM 0.768

26 RRUM 0.264 58 ACDM 0.585

27 LLM 0.757 59 LLM 0.678

30 LLM 0.598 60 RRUM 0.062
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assessment in an institutional test: a new networking model in language testing and ex-

periment with a new psychometric model and task type, unpublished, Yi, 2017).

Next, this study, in the same vein as some other studies (e.g., Galeshi & Skaggs, 2014;

Ravand and Robitzsch, 2018; Yi, 2017), could not neglect the determining role of sam-

ple size, number of items and attributes, Q-matrix misspecifications, and also complex-

ity of the models in modifying the outcomes of the model fit values.

As to the skill mastery proportions, the LLM, ACDM, and RRUM models were very

similar to the G-DINA in terms of the latent class indices, while the DINA and DINO

were the most distant ones. The most prevalent pattern for latent classes were class 1

[0000] and class 16 [1111]. In order to evaluate the agreement between the skill mas-

tery probabilities of the G-DINA and the constrained models, both the root mean

square of the proportion difference (RMSPD) and Kohen’s Kappa between the G-DINA

model and the LLM, ACDM, RRUM, DINA, and DINO models were computed. With

respect to the root mean square of the proportion difference (RMSPD), the LLM

followed by RRUM and ACDM had the closest affinity to the G-DINA, and the DINA

and DINO were the most distant ones.

In relation to the Cohen’s Kappa’s agreement, the G-DINA and the LLM models

reached the highest agreement. Also, the ACDM revealed high agreement with the G-

DINA model followed by the RRUM, DINA, and DINO, while the DINO model had

the least agreement with the G-DINA model.

Finally, classification accuracy indices of both general and reduced models at the test

and attribute levels indicated significantly high and rather identical values to each

other. High values of attribute-level accuracy might be due to applying a true DCM

with items requiring multi attributes.

As a result, it can be concluded that even though the compensatory LLM model

depicted very similar fit indices at the test level to that of the G-DINA, the fit indices

for the non-compensatory RRUM model were not remote, either. Then, it is not far be-

yond the expectation to assume both compensatory/non-compensatory rather than “ei-

ther-or” relationships for the attributes of grammar and vocabulary items in this study,

and this result is incongruent with Yi’s (2017) findings in which he came up with a

compensatory relationship for the attributes of a grammar test.

Furthermore, as Rupp (2007) asserted, some DCMs could be sub-classifications of

larger models which in its turn might question the distinction between the compensa-

tory and non-compensatory relationships of these models.

The model fit was also investigated at the item level to check if applying a model to

all the items was appropriate. To do so, two approaches were carried on. In the first ap-

proach, the G-DINA model was performed to let each item choose its best-fitting

model. In this way, among 38 items, 17 selected the LLM and 9 picked the RRUM as

the best-fitting models. The ACDM, G-DINA, DINA, and DINO models were selected

by 8, 2, 1, and 1 items, respectively. In the second line of action, the suggested reduced

models by the Wald test (a combination of DCMs) were fitted to each individual item.

The results approved better fit indices for the combinations of DCM against that of the

G-DINA model.

Thus, it can be concluded that model selection should be performed at the item level

rather than the test level, and most of the constrained models might perform well for

the test. Following the patterns of model selection by each item, out of 38 items, 34

Shafipoor et al. Language Testing in Asia           (2021) 11:33 Page 16 of 20



items required 2 attributes, and only 3 items required three attributes. It is worth not-

ing that none of the items with three attributes selected the G-DINA model. The justi-

fication that these items did not pick the general model might be the complexity or the

unknown cognitive processes of the items (Henson et al., 2009). Moreover, item selec-

tion was performed with the priority given to the LLM and RRUM, followed by the

ACDM.

Also, all the items with three attributes picked either the LLM or the RRUM model.

This result is in contrast with the literature wherein large number of required attributes

by an item led to the selection of a saturated model. This controversy can probably be

due to the type of the DCM test applied in this study. As the test was an Achievement

one developed based on a true DCM, the difficulty level and the complexity load of the

items could be mitigated and the chance of misspecifications of the Q-matrix could

probably be very slim. In addition, the large number of multi-attribute items might ex-

plain the logic behind the observed responses of the items.

Conclusion
Overall, concerning the results obtained from both test and the item level fit indices,

the following implications are suggested. First, when the nature of the interactions

among the attributes are blurred despite the drawbacks of the general models such as

possessing more parameters, difficulty in estimation routines, and overfitting, perform-

ing a general model in which both compensatory and non-compensatory relationships

of the attributes are possible, can be the best. Then, at the item level, the G-DINA

model can be run to allow each item to select its best-fitting model since it is far be-

yond the expectation to look for a single reduced model to fit all the items in a test.

While the current study introduced practical implications in terms of model selection

for a vocabulary and grammar Achievement Test developed based on the cognitive

diagnostic principles from the beginning, it was limited in applying only one particular

Q-matrix adopted from a study conducted by Shafipoor (Shafipoor, M: A comparative

study of different cognitive diagnostic models for developing a General English

Achievement Test, unpublished). Due to the subjective nature of the Q-matrix con-

struction, even though with a rigorous validation process, multiple Q-matrices might

be required and applied to compare the results.

Furthermore, developing a true DCM in this study could clarify the factors in-

volved in the observed responses of the items, but there are still some other issues

which are almost quintessential in model evaluation, such as the effect of sample

size, person and item local independencies, grain size of the attributes, and the na-

ture of the relationships between the attributes of an item which are required to

be investigated.

Moreover, in this study, the G-DINA model was applied as a general model, and

DINA, DINO, ACMA, LLM, and RRUM were performed as reduced models; other

studies can be conducted to compare other general and constrained models.

Finally, this study attempted to take DCM into a classroom setting by developing an

Achievement Test to look at the practical aspects of DCM in classroom settings. Other

studies can be investigated by focusing on different skills, materials, and content to fill

up the gaps between the theoretical and practical aspects of DCMs.
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